Patents Assigned to Arizona Board of Regents on behalf of Arizona State University
  • Patent number: 11708590
    Abstract: Certain embodiments provide a method for preparing a biochemical product (e.g., phenol, catechol, or muconic acid, or a salt thereof). For example, such methods include contacting a recombinant host having two or more recombinant pathways with a fermentable carbon source and growing the recombinant cell for a time sufficient to synthesize the product. In certain embodiments, each recombinant pathway: 1) is capable of producing the same final biochemical product; 2) comprises at least one gene encoding a polypeptide; 3) is derived from a different endogenous metabolite as its immediate precursor; and 4) converges to the same final product or the same intermediate metabolite.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: July 25, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: David Nielsen, Brian Thompson
  • Patent number: 11708385
    Abstract: Metal-assisted delayed fluorescent (MADF) emitters including cyclic tetradentate platinum (II) and palladium (II) complexes employing 8H-pyrido[3?,2?:4,5]-pyrrolo[3,2,1-de]acridine and its analogues. These complexes provide improved color purity and enhanced operational stability and are suitable for luminescent labels, emitters for organic light emitting diodes (OLEDs), and lighting applications.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: July 25, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jian Li, Yunlong Ji
  • Patent number: 11707636
    Abstract: The present invention comprises methods and devices for modulating the activity or activities of living cells, such as cells found in or derived from humans, animals, plants, insects, microorganisms and other organisms. Methods of the present invention comprise use of the application of ultrasound, such as low intensity, low frequency ultrasound, to living cells to affect the cells and modulate the cells' activities. Devices of the present invention comprise one or more components for generating ultrasound waves, such as ultrasonic emitters, transducers or piezoelectric transducers, composite transducers, CMUTs, and which may be provided as single or multiple transducers or in an array configurations. The ultrasound waves may be of any shape, and may be focused or unfocused.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: July 25, 2023
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventor: William James P. Tyler
  • Patent number: 11707710
    Abstract: This disclosure includes systems and methods for extracting water vapor from atmospheric air and, more particularly, but not by way of limitation, systems and methods for optimizing liquid water production from air, in some instances, taking into account diurnal variations. The systems comprise an adsorption zone an a desorption zone, an actuator to move a desiccant between the adsorption zone and the desorption zone. The liquid water production is optimized based, at least in part, on measurements of one or more of: an ambient air temperature, ambient air relative humidity, and a level of solar insolation.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: July 25, 2023
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Cody Friesen, Elise Switzer, Heath Lorzel
  • Patent number: 11707583
    Abstract: A sensing module for monitoring dosage delivery of a vaporized material, and a portable vaporization unit including the sensing module, include a light sensor that detects disruptions in a light path across a vapor channel, the disruptions caused by the vaporized material flowing through the vapor channel. The light sensor includes a UV light source, which may emit 370 nm wavelength light, and a UV light detector that converts intensity of incident light in the light path into a signal. A microprocessor of the sensing module compares the signal to a baseline measurement to determine the concentration of a medicament in the vapor; then, using the flow rate and activation time of the device, the microprocessor determines the dosage and can perform monitoring and reporting actions based on the dosage. A measuring circuit measures fluctuations in resistance/impedance of a vaporization element to further determine flow rate and/or dosage.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: July 25, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Antonio Garcia, Marco Santello, Christine Woolley
  • Publication number: 20230230249
    Abstract: Detecting single bacterial cells in a sample includes collecting, from a sample provided to an imaging apparatus, a multiplicity of images of the sample over a length of time; assessing a trajectory of each bacterial cell in the sample; and assessing, based on the trajectory of each bacterial cell in the sample, a number of bacterial cell divisions that occur in the sample during the length of time.
    Type: Application
    Filed: June 23, 2021
    Publication date: July 20, 2023
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Shaopeng WANG, Fenni ZHANG, Nongjian TAO
  • Patent number: 11702543
    Abstract: A polymerizable composition for 3D printing includes a photocurable polymer resin and metal diboride nanosheets. The resulting polymer nanocomposite includes a polymer matrix and metal diboride nanosheets dispersed throughout the polymer matrix. A method of synthesizing a nanomaterial-containing resin for 3D printing includes preparing a dispersion of metal diboride nanosheets in a solvent, and combining the dispersion with a liquid polymer resin to yield the nanomaterial-containing resin. A method of fabricating a nanocomposite structure from the nanomaterial-containing resin includes providing the nanomaterial-containing resin to a three-dimensional printer, forming a three-dimensional structure with the three-dimensional printer, and processing the three-dimensional structure to yield the nanocomposite structure.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: July 18, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Alexander A. Green, Matthew Gilliam, Ahmed Yousaf, Qing Hua Wang
  • Patent number: 11704946
    Abstract: The present disclosure provides a method in a data processing system that includes at least one processor and at least one memory. The at least one memory includes instructions executed by the at least one processor to implement a bounded-error estimator system. The method includes receiving information about a plurality of vehicle states of a vehicle from at least one sensor, determining that the information is missing data about at least one vehicle state of the plurality of vehicle states, and determining an estimated vehicle state associated with a final vehicle state. Determining the estimated vehicle state includes calculating a plurality of augmented states for each of the vehicle states included in the plurality of vehicle states and calculating the estimated vehicle state based on the plurality of augmented states. The estimated vehicle state is provided to a vehicle control system of the vehicle.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: July 18, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Syed Hassaan, Qiang Shen, Sze Zheng Yong
  • Patent number: 11705826
    Abstract: Systems and methods for a capacitive coupler for high-voltage step-down include an actively-controlled current-steering circuit connected in series with a current-limiting capacitor in order to transform a higher and potentially variable AC voltage to a lower regulated DC voltage. The actively-controlled current-steering circuit includes a switching element which, during operation, is predominantly either fully open or fully closed, and comparatively spends only a small fraction of operating time in a transition-state between the open and closed positions.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: July 18, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Tyler D. Smith, John Patterson, Clinton W. Ewell
  • Patent number: 11701496
    Abstract: Guidewires useful for cooperating with catheters may be actively steered and/or provide adjustable stiffness. Angle or curvature of a guidewire, and/or flexural modulus of a guidewire, may be adjusted at one or more locations between ends thereof. Variable stiffness segments may include electrically operated compressible and/or extensible materials. Multiple tensile elements may terminate at different body elements to adjust angle or curvature at multiple locations. Multiple circumferentially and/or radially contractible fiber regions may be provided and distributed over a length of a guidewire. Adjustable flexure elements arranged in or along a guidewire may be electrically operated. A flexible core member may be centrally arranged in a tubular body. A flexible guide wire or track may cooperate with electrically operable motor units.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: July 18, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jeffrey LaBelle, Julio Morera, Marco Santello
  • Publication number: 20230223651
    Abstract: A separator for a lithium-based battery, and method for fabricating the same is disclosed. The method includes oxidizing cellulose fibrils to form oxidized cellulose having carboxylic functional groups, decorating the oxidized cellulose with nanoparticles, and forming the nanoparticle-decorated oxidized cellulose into a film to become the separator for the lithium-based battery. The cellulose may be a bacterial cellulose. The cellulose fibrils may be oxidized through a TEMPO oxidation. Decorating the oxidized cellulose with nanoparticles may include introducing a precursor solution to the oxidized cellulose that reacts with hydroxyl groups of the oxidized cellulose while preserving the carboxylic functional groups, causing the nanoparticles to nucleate on the surface of the oxidized cellulose. The nanoparticles may be composed of an oxide material. The oxide material may be SiO2. The precursor solution may be tetraethyl orthosilicate (TEOS).
    Type: Application
    Filed: January 12, 2023
    Publication date: July 13, 2023
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Zhaoyang Fan, Wenyue Li, Shu Wang
  • Patent number: 11698952
    Abstract: A smart hardware security engine using biometric features and hardware-specific features is provided. The smart security engine can combine one or more entropy sources, including individually distinguishable biometric features, and hardware-specific features to perform secret key generation for user registration and authentication. Such hybrid signatures may be distinct from person-to-person (e.g., due to the biometric features) and from device-to-device (e.g., due to the hardware-specific features) while varying over time. Thus, embodiments described herein can be used for personal device authentication as well as secret random key generation, significantly reducing the scope of an attack.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: July 11, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jae-sun Seo, Shihui Yin, Sai Kiran Cherupally
  • Patent number: 11696713
    Abstract: ElectroCorticoGraphy (ECoG) sensors and uses are disclosed. These ECoG arrays, systems, and processes may be operable or configured to: i) simultaneously record neural signals while providing stimulation on specific portions of the cortex using a user-guided stimulator; ii) acquire neural signals over a large cortex area; iii) provide individual or group stimulation while concurrently receiving neural feedback; and/or iv) acquire neural signals at a setting remote from the neural source using wireless or other communication techniques.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: July 11, 2023
    Assignees: Arizona Board of Regents on behalf of Arizona State University, Mayo Foundation for Medical Education and REsearch
    Inventors: Junseok Chae, Shiyi Liu, Alfredo Quinones-Hinojosa, Tito Vivas-Buitrago
  • Patent number: 11699079
    Abstract: A system for time series analysis using attention models is disclosed. The system may capture dependencies across different variables through input embedding and may map the order of a sample appearance to a randomized lookup table via positional encoding. The system may capture capturing dependencies within a single sequence through a self-attention mechanism and determine a range of dependency to consider for each position being analyzed. The system may obtain an attention weighting to other positions in the sequence through computation of an inner product and utilize the attention weighting to acquire a vector representation for a position and mask the sequence to enable causality. The system may employ a dense interpolation technique for encoding partial temporal ordering to obtain a single vector representation and a linear layer to obtain logits from the single vector representation. The system may use a type dependent final prediction layer.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: July 11, 2023
    Assignees: Arizona Board of Regents On Behalf Of Arizona State University, Lawrence Livermore National Security. LLC
    Inventors: Andreas Spanias, Huan Song, Jayaraman J. Thiagarajan, Deepta Rajan
  • Publication number: 20230215961
    Abstract: Contacts for solar cells and other optoelectronic devices are provided. Embodiments described herein take advantage of the surface Fermi level pinning effect to build an electrical field inside of a semiconductor to extract or inject carriers for solar cells, photodetectors, and light-emitting device applications. For example, n-type or p-type two-dimensional (2D) materials can be used in contact with an n-type semiconductor to form a “p-region” so that a p-n junction, or an i-n or n-n+ junction can be constructed. Similarly, n-type or p-type 2D materials can be used in contact with a p-type semiconductor to form an “n-region” so that an n-p junction, or an i-p or p-p+ junction can be constructed. These structures can provide sufficiently high electrical field inside the semiconductor to extract photogenerated carriers in solar cells and photodetectors or inject minority carriers for light-emitting devices.
    Type: Application
    Filed: January 6, 2023
    Publication date: July 6, 2023
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Yong-Hang ZHANG, Xin QI, Zheng JU, Jia DING, Tyler MCCARTHY, Stephen SCHAEFER
  • Patent number: 11690563
    Abstract: Methods and systems for remote sleep monitoring are provided. Such methods and systems provide non-contact sleep monitoring via remote sensing or radar sensors. In this regard, when processing backscattered radar signals from a sleeping subject on a normal mattress, a breathing motion magnification effect is observed from mattress surface displacement due to human respiratory activity. This undesirable motion artifact causes existing approaches for accurate heart-rate estimation to fail. Embodiments of the present disclosure use a novel active motion suppression technique to deal with this problem by intelligently selecting a slow-time series from multiple ranges and examining a corresponding phase difference. This approach facilitates improved sleep monitoring, where one or more subjects can be remotely monitored during an evaluation period (which corresponds to an expected sleep cycle).
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: July 4, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Yu Rong, Alex Chiriyath, Arindam Dutta, Daniel W. Bliss
  • Patent number: 11693972
    Abstract: Various embodiments of systems and methods for an at-risk system identification via analysis of discussions from various online hacker communities are disclosed herein.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: July 4, 2023
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Eric Nunes, Jana Shakarian, Paulo Shakarian, Mohammed Almukaynizi, Harshdeep Singh, Gerardo Simari, Anant Sharma
  • Patent number: 11694431
    Abstract: Various embodiments of a cyber-physical system for providing cloud prediction for photovoltaic array control are disclosed herein.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: July 4, 2023
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Sameeksha Katoch, Pavan Turaga, Andreas Spanias, Cihan Tepedelenlioglu
  • Patent number: 11695153
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: July 4, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Iolanda Santana Klein, Telpriore Greg Tucker
  • Publication number: 20230203428
    Abstract: The present invention relates to methods of improving cell lysis procedures and yields of intracellular biomolecules extracted from biomass. The methods comprise storing the microbial cells in ultra-low temperature (ULT) conditions for at least 10 minutes prior to lysing the cells.
    Type: Application
    Filed: December 28, 2022
    Publication date: June 29, 2023
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Arul Mozhy VARMAN, Dylan SMITH, Aditya SARNAIK