Abstract: A spectrograph including light beam reformatting element(s), beam expander(s), dispersive element(s) and light receiving element(s). The light beam reformatting element(s) reformat a received light beam into a reformatted light beam having a first dimension along a first axis that is larger than a dimension of the received light beam along the first axis and a second dimension along a second axis substantially orthogonal to the first axis that is smaller than a dimension of the received light beam along the second axis. The beam expander(s) anamorphically expand the reformatted light beam along the second axis into an expanded light beam. The dispersive element(s) disperse the expanded light beam along the second axis, resulting in a dispersed light beam. The light receiving element(s) receive the dispersed light beam. The light receiving element(s) may include one or more detectors to measure spectral intensity of the dispersed light beam.
Abstract: This document describes a general system for noise reduction, as well as a specific system for Magnetic Resonance Imaging (MRI) and Nuclear Quadrupole Resonance (NQR). The general system, which is called Calculated Readout by Spectral Parallelism (CRISP), involves reconstruction and recombination of frequency-limited broadband data using separate narrowband data channels to create images or signal profiles. A multi-channel CRISP system can perform this separation using (1) frequency tuned hardware, (2) a frequency filter-bank (or equivalent), or (3) a combination of implementations (1) and (2). This system significantly reduces what we call cross-frequency noise, thereby increasing signal-to-noise-ratio (SNR). A multi-channel CRISP system applicable to MRI and NQR are described.
Abstract: A vibration-based power generator has a variable stiffness oscillator connected to a base. The oscillator comprises an inertial mass moving relative to the base in response to vibrations. The oscillator has a neutral position corresponding to a position of the oscillator when no vibrations are transmitted to the base. The oscillator has a first position where the mass is at a first distance and a second position where the inertial mass is at a second distance from a position of the mass when the oscillator is in neutral position. The second distance is greater than the first distance. A stiffness of the oscillator at the second position is greater than a stiffness of the oscillator at the first position. A transducer generating electric power in response to movement of the inertial mass is associated with the oscillator. A method of optimizing a vibration-based power generator is also presented.