Patents Assigned to Arkema Inc.
  • Publication number: 20220235239
    Abstract: ABTRACT The present invention relates to a liquid, thermoplastic acrylic gel cap composition that can impart UV resistance, higher impact, and aesthetic effects to a composite material. Additionally, the post processing of the material when combined with a thermoplastic composite can allow for thermoformability, weldability and recyclability, unlike seen with traditional thermoset based gel coats.
    Type: Application
    Filed: June 3, 2020
    Publication date: July 28, 2022
    Applicants: ARKEMA INC., GLIMA INNOVATION LTDA
    Inventors: Gilmar DA COSTA LIMA, Robert J. BARSOTTI, Dana L. SWAN
  • Patent number: 11390008
    Abstract: A method of manufacturing a semi-crystalline article from at least one pseudo-amorphous polymer including a poly aryl ether ketone, such as PEKK, including a softening step, wherein the at least one pseudo-amorphous polymer is heated to a temperature above its glass transition temperature to soften the polymer, and a crystallization step, wherein the at least one pseudo-amorphous polymer is heated to a temperature between its glass transition temperature and melting temperature, the pseudo-amorphous polymer being placed on a mold during either the softening step or the crystallization step before at least some crystallization takes place. The method results in articles demonstrating increased opacity, increased crystallinity, increased thermal resistance, improved chemical resistance, and improved mechanical properties over articles formed by traditional thermoforming processes.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 19, 2022
    Assignee: Arkema Inc.
    Inventors: Bruce Clay, Timothy A. Spahr, Philippe Bussi, Richard Audry, Jason M. Lyons, Yves Deyrail
  • Patent number: 11384216
    Abstract: A process for forming voided latex particles is improved by combining swelling and polymerization of an outer shell into a single step. The process includes contacting multi-stage emulsion polymer particles comprising a core, at least one intermediate shell, with a swelling agent, and polymerizing an outer shell after said contacting with swelling agent wherein the core and the at least one intermediate shell are contacted with swelling agent in the presence of less than 0.5% monomer based on the weight of the multi-stage emulsion polymer particles, and substantially all of the swelling occurs during polymerization of the outer shell.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: July 12, 2022
    Assignee: Arkema Inc.
    Inventors: Lily Liu, Wayne Devonport, Daniel Edward Stark, Sr., Matthew F. Boudreaux
  • Patent number: 11333285
    Abstract: A hose coupling guard including a fixture configured to connect to a hose coupling having a release mechanism, and a cover movably connected to the fixture to be movable between a first position and a second position. The cover includes a shield configured to enclose the release mechanism when the cover is in the first position, and to expose the release mechanism when the cover is in the second position. A display surface may be located on the shield and configured to be oriented to face a location from which an operator can operate the release mechanism.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 17, 2022
    Assignee: Arkema Inc.
    Inventor: Sylvain Charest
  • Patent number: 11319455
    Abstract: Coating compositions including a binder agent are disclosed. The binder agent is formed of a fluorocopolymer and a non-fluorinated film-forming polymer. Methods of coating cables with the coating compositions are also described herein.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 3, 2022
    Assignees: General Cable Technologies Corporation, Arkema Inc.
    Inventors: Sathish Kumar Ranganathan, Srinivas Siripurapu, Vijay Mhetar, Ryan M. Andersen, Kurt Arthur Wood
  • Patent number: 11286223
    Abstract: Disclosed is a method of purifying a stream of crude hydrochlorofluoroolefin refrigerant produced by the reaction of 1,1,3,3 tetrachloropropene (R1230za) or 1,1,1,3,3-pentachloropropane (R240fa) with HF. The process includes a step of removing the cis-(Z) isomer by distillation of the crude refrigerant stream prior to a step of reacting the crude refrigerant stream with a base. The reaction with the base is a necessary step in production of the refrigerant and is done to remove HF and residual HCl from the crude refrigerant stream. Removal of the cis-(Z) isomer before the reaction with the base reduces the amount of toxic flammable trifluoropropyne (TFP) that is produced as a side-reaction during the reaction with the base. In addition, temperature control during the reaction with the base is less critical to minimizing the TFP production if the cis-(Z) isomer is first removed.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: March 29, 2022
    Assignee: Arkema Inc.
    Inventors: Anne M. Pigamo, Kevin Hisler, Wayne Brooks, Jay F. Miller, Bertrand Louis Maurice Collier, Emmanuel D. Boussarie
  • Patent number: 11254765
    Abstract: A curable composition containing at least one of a haloalkyl ether (meth)acrylate or a haloalkenyl ether (meth)acrylate and, optionally, one or more different types of co-monomers is cured to provide a polymer having advantageous properties as a result of the incorporation of halogenated functionality derived from the haloalkyl/haloalkenyl ether (meth)acrylate monomer.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: February 22, 2022
    Assignee: Arkema Inc.
    Inventors: Benjamin Bin Chen, Craig Alan Polsz, Lucy Clarkson, Jing-Han Wang
  • Patent number: 11248071
    Abstract: The invention relates to fluoropolymer filament for use in 3-D printing, and 3-D printed fluoropolymer articles having low warpage, excellent chemical resistance, excellent water resistance, flame resistance, and good mechanical integrity. Additionally, the articles of the invention have good shelf life without the need for special packaging. In particular, the invention relates to filament, 3-D printed polyvinylidene fluoride (PVDF) articles, and in particular material extrusion 3-D printing. The articles may be formed from PVDF homopolymers, copolymers, such as KYNAR® resins from Arkema, as well as polymer blends with appropriately defined low shear melt viscosity. The PVDF may optionally be a filled PVDF formulation. The physical properties of the 3-D printed articles can be maximized and warpage minimized by optimizing processing parameters.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: February 15, 2022
    Assignee: Arkema Inc.
    Inventors: David Shin-Ren Liu, Gregory S. O'Brien, David A. Seiler, Mark Aubart, James J. Henry, Thomas Roland
  • Patent number: 11208536
    Abstract: The present invention relates to blowing agent compositions comprising at least one hydrofluoroolefin (HFO) selected from cis- and/or trans-1,3,3,3-tetrafluoropropene (HFO-1234ze) and at least one hydrochlorofluoroolefin (HCFO) selected from cis- and/or trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) used in the preparation of foamable thermoplastic compositions. The blowing agent compositions are useful in the production of low density insulating foams with improved k-factor.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 28, 2021
    Assignee: Arkema Inc.
    Inventor: Benjamin Bin Chen
  • Patent number: 11203672
    Abstract: An organic peroxide composition is provided which is liquid or near liquid at 25° C. or a low melting solid and which includes at least one ethylenically unsaturated organic peroxide (i.e., an organic peroxide containing at least one carbon-carbon double bond) and at least one saturated organic peroxide. The organic peroxide composition may further include at least one mono- and/or poly-unsaturated compound and at least one free-radical trap. The organic peroxide can be blended into a polymer such as a powdered or granular polyethylene resin. This peroxide-containing polymer can be used in rotational molding, wherein the polymer is added to a mold which is heated in an oven with rotation, thereby melting the polymer and coating the inside of the mold.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: December 21, 2021
    Assignee: Arkema Inc.
    Inventors: Leonard H. Palys, Marina Despotopoulou, Peter R. Dluzneski
  • Patent number: 11168205
    Abstract: The invention relates to composite polymer modifiers for thermoplastic resins, and especially for polyvinyl chloride (PVC). The composite modifier is an intimate blend of mineral filler and polymeric process aid, which is formed by the co-powderization of aqueous emulsions, suspensions or slurries of one or more mineral filler(s) and process aid(s). The resulting composite modifier provides more effective modification of the thermoplastic resin than by the use of the dried components formed separately. The composite modifier may also contain other co-powderized components such as impact modifiers, for additional benefits.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: November 9, 2021
    Assignee: Arkema Inc.
    Inventor: Lisa B. Rachwal
  • Patent number: 11168206
    Abstract: The present invention relates to an acrylic process aid useful in vinyl foam extrusion. The process aid is an acrylic copolymer containing from 50 to 79 weight percent of methyl methacrylate monomer units and has a Tg of less than 90° C., preferably less than 70° C., and more preferably less than 65° C. PVC and CPVC foams containing this acrylic process aid fuse faster at the same temperature, or fuse in the same time at lower temperatures than foam formulations currently used.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 9, 2021
    Assignee: Arkema Inc.
    Inventor: Paul R. Lavallee
  • Patent number: 11161810
    Abstract: Continuous photochemical production of high purity linear mercaptan and sulfide-containing compositions.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: November 2, 2021
    Assignee: Arkema Inc.
    Inventors: Jean-Philippe R. Chauvin, Brian E. Lordan, Patricia Wing-Kee Cheung, Vijay R. Srinivas, Andrew D. Polli
  • Patent number: 11161990
    Abstract: The wet adhesion of a coating composition may be improved through the use of voided latex particles as opacifying agents which contain a hollow interior as well as an outer shell of a polymer containing functional groups such as amino, 1,3-diketo, urea or ureido. Other types of functional groups may be introduced to the outer shell polymer in order to vary other desired characteristics of the coating. The voided latex particles are non-film-forming.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: November 2, 2021
    Assignee: Arkema Inc.
    Inventors: Keith R. Olesen, Matthew F. Boudreaux, Lily Liu
  • Patent number: 11161965
    Abstract: Organopolysulfides such as organodisulfides, organotrisulfides and/or organotetrasulfides are useful stabilizers for polymer compositions, wherein the tendency of a polymer to degrade when exposed to environmental conditions such as heat, light and oxygen may be ameliorated by the incorporation of one or more of such organopolysulfides, optionally together with one or more additional stabilization additives such as a hindered phenol antioxidant, phosp(on)ite stabilizer or hindered amine light stabilizer.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 2, 2021
    Assignee: Arkema Inc.
    Inventors: George Charles Fortman, Jonathan Pearce Stehman, Stephanie Christina Vrakas, Kurt Wood
  • Patent number: 11136450
    Abstract: The invention relates to the use of chopped fibers in thermoplastic composite compounds, and in particular to thermoplastic fluoropolymer compounds. The fluoropolymer matrix contains thermoplastic fluoropolymers that have been grafted with a carboxylic polar functionality, such as KYNAR ADX® polymer from Arkema. The chopped fiber—grafted fluoropolymer composite has increased tensile and flexural strength compared to fluoropolymer compounds that contain no grafted carboxylic grafted fluoropolymer.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: October 5, 2021
    Assignee: ARKEMA INC.
    Inventors: Gregory Scott O'Brien, Ramin Amin-Sanayei, Saeid Zerafati
  • Patent number: 11133562
    Abstract: The invention relates to integrated electrode separators (IES), and their use in lithium ion batteries as replacements for free standing separators. The IES results from coating an electrode with a fluoropolymer aqueous-based emulsion or suspension, and drying the coating to produce a tough, porous separator layer on the electrodes. The aqueous fluoropolymer coating may optionally contain dispersed inorganic particles and other additives to improve electrode performance such as higher ionic conduction or higher temperature use. The IES provides several advantages, including a thinner, more uniform separator layer, and the elimination of a separate battery component (separator membrane) for a simpler and cost-saving manufacturing process. The aqueous separator coating can be used in combination with a solvent cast electrode as well as an aqueous cast electrode either in two separate process steps, or in a one-step process.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 28, 2021
    Assignee: Arkema Inc.
    Inventors: John Schmidhauser, Scott R. Gaboury, Ramin Amin-Sanayei, Christophe Roger, Wensheng He, Rosemary Heinze
  • Patent number: 11125549
    Abstract: Methods and apparatus for measuring a thickness of a coating on an moving object are provided. Light is directed toward the object at a predetermined location on the object such that a portion of the light interacts with the object. A 1D and/or 2D maximum intensities for at least one wavelength channel is captured that is produced by the portion of the light interacting with the object. A measured average intensity of the wavelength channel and/or intensities and their arithmetic derivatives of multi wavelength channel geometries is converted into 1D (averaged) and/or 2D thickness values. Based on these values an acceptability of the coating is evaluated and thickness calculated.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: September 21, 2021
    Assignee: Arkema Inc.
    Inventors: Gunter E. Moeller, Roman Y. Korotkov, Ryan C. Smith
  • Patent number: 11117154
    Abstract: A modular apparatus for coating glass articles with a chemical compound includes a coating hood section (10a) including a series of interconnected walls (12) defining an interior chamber (18, 20a, 20b) having an inlet (32) and an outlet (44), a blower (24) positioned at least partially in the interior chamber (18, 20a, 20b) to carry air from the inlet (32) towards the outlet (44); and a connector (50) for connecting the coating hood section (10a) to an identical coating hood section (10b). The connector (50) for connecting being defined on at least one of the interconnected walls (12) of the coating hood section (10a).
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: September 14, 2021
    Assignee: Arkema Inc.
    Inventors: Jeremy J. Nihart, Ryan C. Smith
  • Patent number: D939671
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 28, 2021
    Assignee: Arkema Inc.
    Inventor: Sylvain Charest