Abstract: Amounts of components in a specimen can be analyzed with excellent quantitativity. The analysis includes: measuring an amount of a component to be analyzed in a specimen; measuring an amount of a standard component present originally and homeostatically in the specimen other than the component to be analyzed; determining the amount of the specimen from the amount of the standard component thus measured and a known concentration of the standard component in the specimen; and determining a concentration of the component to be analyzed in the specimen from the amount of the specimen thus determined and the amount of the component to be analyzed thus measured. The quantitative analysis of the present invention allows a component to be analyzed to be measured with high quantitativity as shown in FIG. 1.
Abstract: A suction generating device for a sample analysis device is provided. The device comprises four parts, namely, a cover plate 61, a middle plate 62, a bottom plate 63 and an operation plate 64. A protruding portion 642 for compressing the suction generating chamber is formed in an approximately center portion on the lower side of the operation plate 64, a protruding portion 641 for operation is formed in an approximately center portion on the upper side of the operation plate 64. A cavity 631 for inserting the sample analysis device therein is formed in an approximately center portion in the bottom plate 63, and a hole 632 for light irradiation is punched in a determined portion in the cavity 631. A concave portion 623 for fitting the operation plate 64 therein is formed in the middle plate 62, and a window section 621 is formed in the center of the concave portion 623 to let the lower protruding portion 642 on the operation plate 64 protrude therethrough.
Abstract: An ALC circuit is turned on (S1), a nozzle is shifted to a sampling position (S2), and after the ALC circuit has been turned off (S3), the nozzle is allowed to start discharging air from its tip (S4). While the nozzle is being lowered, the inner pressure of the nozzle is monitored (S5, S6), and upon detection of an increase in the pressure, the discharging process of air and the nozzle lowering process are stopped (S7), while the monitoring of the magnitude of the pressure is continued (S8). When the magnitude of the pressure is being maintained within a permissible range of the change for a predetermined time, it is judged that the tip of the nozzle has come into contact with the true liquid level, and after a suction operation of a sample (S9), the nozzle is raised (S10).
Abstract: A blood testing tool is provided, which separates blood cells and can collect blood plasma or blood serum with a high yield. The blood testing tool includes an asymmetric porous membrane with a pore size distribution in which an average pore size varies to be reduced continuously or discontinuously in a thickness direction. The porous membrane includes a blood supply portion, a development portion, and a blood-cell blocking portion formed between the blood supply portion and the development portion and pores in the blood cell blocking portion include only pores through which blood cells cannot pass. When blood is supplied to one side with larger pores of the blood supply portion, the blood moves in a direction parallel to a surface of the porous membrane by a capillary phenomenon, but only blood plasma or blood serum moves into the development portion to develop.
Abstract: The present invention provides a method for stabilizing trypsin, in which enzyme reaction of trypsin can be generated in a two-solution system, degradation of trypsin and its substrate can be prevented, and enzymatic activity of trypsin is improved compared to conventional methods, and which can be sufficiently applied to an automatic analyzer. An enzyme solution is prepared by dissolving trypsin in a buffer solution having a pH at which enzymatic activity of trypsin is active and containing calcium and/or manganese ions. It is preferable that the total concentration of the calcium ions and the manganese ions in the buffer solution is in the range of 3 to 10 mmol/l. It is also preferable that the concentration of the buffer solution is at least 10 mmol/l, and that the pKa of the buffer solution is higher than the pH of the buffer solution.