Abstract: A variable and reversible resistive element includes a transition metal oxide layer, a bottom electrode and at least one conductive plug module. The bottom electrode is disposed under the transition metal oxide layer. The conductive plug module is disposed on the transition metal oxide layer. The conductive plug module includes a metal plug and a barrier layer. The conductive plug is electrically connected with the transition metal oxide layer. The barrier layer surrounds the metal plug, wherein the transition metal oxide layer is made by reacting a portion of a dielectric layer being directly below the metal plug and a portion of the barrier layer contacting the portion of the dielectric layer, wherein the dielectric layer is formed on the bottom electrode. Moreover, a non-volatile memory device and methods for operating and manufacturing the same is disclosed in specification.
Abstract: A variable and reversible resistive element includes a transition metal oxide layer, a bottom electrode and at least one conductive plug module. The bottom electrode is disposed under the transition metal oxide layer. The conductive plug module is disposed on the transition metal oxide layer. The conductive plug module includes a metal plug and a barrier layer. The conductive plug is electrically connected with the transition metal oxide layer. The barrier layer surrounds the metal plug, wherein the transition metal oxide layer is made by reacting a portion of a dielectric layer being directly below the metal plug and a portion of the barrier layer contacting the portion of the dielectric layer, wherein the dielectric layer is formed on the bottom electrode. Moreover, a non-volatile memory device and methods for operating and manufacturing the same is disclosed in specification.
Abstract: A one-time programmable memory cell is provided, the one-time programmable memory cell comprises: a gate dielectric layer disposed on a well; a gate electrode disposed on the gate dielectric layer; source/drain regions disposed in the well at the sides of the gate electrode, respectively; a first salicide layer disposed on one of the source/drain regions; a capacitive dielectric layer disposed on the gate electrode and the other of the source/drain regions; a first conductive plug disposed on the first salicide layer; and a second conductive plug disposed on the capacitive dielectric layer. The size of the first conductive plug is different form the size of the second conductive plug.
Abstract: A tunable current driver comprising a semiconductor memory device and a selective transistor is provided, in which one of the source/drain pair of the semiconductor memory device is electrically coupled with a lighting device, and one of the source/drain pair of the selective transistor is electrically coupled with the gate electrode of the semiconductor memory device. The semiconductor memory device not only acts as “drive transistor” to drive the lighting device, but also is capable of adjusting the threshold voltage thereof.
Abstract: A method for operating a photosensitive device is provided. At first, the photosensitive device is provided, which comprising a photo sensor circuit and a photo sensor, where the photo sensor is located above and electrically coupled with the photo sensor circuit, and where the photo sensor comprises a bottom electrode; a photosensitive layer located on the bottom electrode; and a transparent electrode located on the photosensitive layer. Then, a first electrical potential is supplied to the transparent electrode, and a second electrical potential is supplied to the bottom electrode, where the first electrical potential is greater than the second electrical potential.