Patents Assigned to ARTERYS INC.
-
Patent number: 12278009Abstract: This disclosure relates to a system that synchronizes the presentation of medical images in multiple contexts and methods thereof. The system includes a variety of contexts that display medical images, and the contexts are connected by communication channels. When a user edits or otherwise interacts with one of the contexts, a message is sent to other contexts via the communication channels, and the other contexts can adjust their presentation of medical images to achieve synchronization.Type: GrantFiled: June 27, 2022Date of Patent: April 15, 2025Assignee: Arterys Inc.Inventor: Torin Arni Taerum
-
Patent number: 12272435Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets; segmentation; visualization of flow superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: May 11, 2023Date of Patent: April 8, 2025Assignee: Arterys Inc.Inventors: Giovanni De Francesco, Darryl Bidulock, Kyle Dormer, Hussein Patni, Nicholas Svarich, Alan Whiting
-
Patent number: 12183001Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.Type: GrantFiled: December 8, 2022Date of Patent: December 31, 2024Assignee: Arterys Inc.Inventors: Daniel Irving Golden, Fabien Rafael David Beckers, John Axerio-Cilies, Matthieu Le, Jesse Lieman-Sifry, Anitha Priya Krishnan, Sean Patrick Sall, Hok Kan Lau, Matthew Joseph Didonato, Robert George Newton, Torin Arni Taerum, Shek Bun Law, Carla Rosa Leibowitz, Angélique Sophie Calmon
-
Patent number: 12171537Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: March 13, 2023Date of Patent: December 24, 2024Assignee: Arterys Inc.Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
-
Patent number: 12161451Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: May 19, 2023Date of Patent: December 10, 2024Assignee: Arterys Inc.Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
-
Patent number: 12117512Abstract: Systems and methods for providing improved eddy current correction (ECC) in medical imaging environments. One or more of the embodiments disclosed herein provide a deep learning-based convolutional neural network (CNN) model trained to automatically generate an ECC mask which may be composited with two-dimensional (2D) scan slices or four-dimensional (4D) scan slices and made viewable through, for example, a web application, and made manipulable through a user interface thereof.Type: GrantFiled: February 11, 2020Date of Patent: October 15, 2024Assignee: Arterys Inc.Inventors: Berk Dell Norman, Jesse Lieman-Sifry, Sean Patrick Sall, Daniel Irving Golden, Hok Kan Lau
-
Patent number: 12106846Abstract: Techniques to leverage computer monitor and graphics card hardware capabilities, using DCI-P3 and rec2020 color spaces for medical imagery are provided. The technique involves downloading the original raw source pixel data from the medical image from the webserver to the browser. A window and level transform is then applied to the raw pixel data enabling it to be displayed using the web browser capable of leveraging the hardware capabilities of commodity monitors and video cards that are capable of high bit depth display.Type: GrantFiled: November 15, 2019Date of Patent: October 1, 2024Assignee: Arterys Inc.Inventor: Torin Taerum
-
Patent number: 11915821Abstract: This disclosure relates to a medical image viewer for incorporating multi-user collaboration features, such as in-image commenting and workspace sharing. An example method includes receiving a comment location including image coordinates and comment information associated with the comment from a user device. The comment information includes a text body, identify identity information related to the user, and a comment creation date. The example method further includes determining world coordinates based on the image coordinates, and storing the world coordinates and the comment information as a subset of header attributes of the DICOM image file.Type: GrantFiled: November 19, 2019Date of Patent: February 27, 2024Assignee: ARTERYS INC.Inventors: Fabien Rafael David Beckers, John Axerio-Cilies, Maud Josee Caroline Benaddi, Patrick Ross Corless, Shek Bun Law, Justin Reid, Derek John Scherger, Kendall Wu
-
Patent number: 11854703Abstract: Systems and methods for providing a novel framework to simulate the appearance of pathology on patients who otherwise lack that pathology. The systems and methods include a “simulator” that is a generative adversarial network (GAN). Rather than generating images from scratch, the systems and methods discussed herein simulate the addition of diseases-like appearance on existing scans of healthy patients. Focusing on simulating added abnormalities, as opposed to simulating an entire image, significantly reduces the difficulty of training GANs and produces results that more closely resemble actual, unmodified images. In at least some implementations, multiple GANs are used to simulate pathological tissues on scans of healthy patients to artificially increase the amount of available scans with abnormalities to address the issue of data imbalance with rare pathologies.Type: GrantFiled: June 10, 2019Date of Patent: December 26, 2023Assignee: ARTERYS INC.Inventors: Hok Kan Lau, Jesse Lieman-Sifry, Sean Patrick Sall, Berk Dell Norman, Daniel Irving Golden, John Axerio-Cilies, Matthew Joseph Didonato
-
Patent number: 11688495Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets; segmentation; visualization of flow superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: May 3, 2018Date of Patent: June 27, 2023Assignee: Arterys Inc.Inventors: Giovanni De Francesco, Darryl Bidulock, Kyle Dormer, Hussein Patni, Nicholas Svarich, Alan Whiting
-
Patent number: 11633119Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: November 19, 2020Date of Patent: April 25, 2023Assignee: ARTERYS INC.Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
-
Patent number: 11551353Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.Type: GrantFiled: November 15, 2018Date of Patent: January 10, 2023Assignee: Arterys Inc.Inventors: Daniel Irving Golden, Fabien Rafael David Beckers, John Axerio-Cilies, Matthieu Le, Jesse Lieman-Sifry, Anitha Priya Krishnan, Sean Patrick Sall, Hok Kan Lau, Matthew Joseph Didonato, Robert George Newton, Torin Arni Taerum, Shek Bun Law, Carla Rosa Leibowitz, Angélique Sophie Calmon
-
Patent number: 11515032Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: May 10, 2019Date of Patent: November 29, 2022Assignee: ARTERYS INC.Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
-
Patent number: 10902598Abstract: Systems and methods for automated segmentation of anatomical structures (e.g., heart). Convolutional neural networks (CNNs) may be employed to autonomously segment parts of an anatomical structure represented by image data, such as 3D MRI data. The CNN utilizes two paths, a contracting path and an expanding path. In at least some implementations, the expanding path includes fewer convolution operations than the contracting path. Systems and methods also autonomously calculate an image intensity threshold that differentiates blood from papillary and trabeculae muscles in the interior of an endocardium contour, and autonomously apply the image intensity threshold to define a contour or mask that describes the boundary of the papillary and trabeculae muscles. Systems and methods also calculate contours or masks delineating the endocardium and epicardium using the trained CNN model, and anatomically localize pathologies or functional characteristics of the myocardial muscle using the calculated contours or masks.Type: GrantFiled: January 25, 2018Date of Patent: January 26, 2021Assignee: Arterys Inc.Inventors: Daniel Irving Golden, Matthieu Le, Jesse Lieman-Sifry, Hok Kan Lau
-
Patent number: 10869608Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: November 29, 2016Date of Patent: December 22, 2020Assignee: ARTERYS INC.Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
-
Patent number: 10871536Abstract: Systems and methods for automated segmentation of anatomical structures, such as the human heart. The systems and methods employ convolutional neural networks (CNNs) to autonomously segment various parts of an anatomical structure represented by image data, such as 3D MRI data. The convolutional neural network utilizes two paths, a contracting path which includes convolution/pooling layers, and an expanding path which includes upsampling/convolution layers. The loss function used to validate the CNN model may specifically account for missing data, which allows for use of a larger training set. The CNN model may utilize multi-dimensional kernels (e.g., 2D, 3D, 4D, 6D), and may include various channels which encode spatial data, time data, flow data, etc. The systems and methods of the present disclosure also utilize CNNs to provide automated detection and display of landmarks in images of anatomical structures.Type: GrantFiled: November 29, 2016Date of Patent: December 22, 2020Assignee: ARTERYS INC.Inventors: Daniel Irving Golden, John Axerio-Cilies, Matthieu Le, Torin Arni Taerum, Jesse Lieman-Sifry
-
Patent number: 10600184Abstract: Systems and methods for automated segmentation of anatomical structures (e.g., heart). Convolutional neural networks (CNNs) may be employed to autonomously segment parts of an anatomical structure represented by image data, such as 3D MRI data. The CNN utilizes two paths, a contracting path and an expanding path. In at least some implementations, the expanding path includes fewer convolution operations than the contracting path. Systems and methods also autonomously calculate an image intensity threshold that differentiates blood from papillary and trabeculae muscles in the interior of an endocardium contour, and autonomously apply the image intensity threshold to define a contour or mask that describes the boundary of the papillary and trabeculae muscles. Systems and methods also calculate contours or masks delineating the endocardium and epicardium using the trained CNN model, and anatomically localize pathologies or functional characteristics of the myocardial muscle using the calculated contours or masks.Type: GrantFiled: January 25, 2018Date of Patent: March 24, 2020Assignee: ARTERYS INC.Inventors: Daniel Irving Golden, Matthieu Le, Jesse Lieman-Sifry, Hok Kan Lau
-
Patent number: 10398344Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: perform error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. An asynchronous command and imaging pipeline allows remote image processing and analysis in a timely and secure manner even with complicated or large 4-D flow MRI data sets.Type: GrantFiled: November 5, 2018Date of Patent: September 3, 2019Assignee: Arterys Inc.Inventors: Fabien Beckers, Albert Hsiao, John Axerio-Cilies, Torin Arni Taerum, Daniel Marc Raymond Beauchamp
-
Patent number: 10331852Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.Type: GrantFiled: November 29, 2016Date of Patent: June 25, 2019Assignee: Arterys Inc.Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
-
Patent number: 10117597Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: perform error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. An asynchronous command and imaging pipeline allows remote image processing and analysis in a timely and secure manner even with complicated or large 4-D flow MRI data sets.Type: GrantFiled: January 16, 2015Date of Patent: November 6, 2018Assignee: ARTERYS INC.Inventors: Fabien Beckers, Albert Hsiao, John Axerio-Cilies, Torin Arni Taerum, Daniel Marc Raymond Beauchamp