Abstract: The present invention provides a technology capable of measuring three-dimensional shapes by applying a stereo method even in the case that an object has a specular surface. A shape measuring apparatus 1 is equipped with a pattern position specification section 20 (before-movement pattern position specification section, after-movement pattern position specification section), an image capturing position calculation section 30 (before-movement image capturing position calculation section, after-movement image capturing calculation section), a pixel area specification section 40 (second pixel area specification section), an inclination angle calculation section 50 (before-movement inclination angle calculation section, after-movement inclination angle calculation section), a height-direction coordinate determination section 60, and an output section 80.
Abstract: To provide a process for producing a glass substrate provided with an aluminum oxide-containing silicon oxide film. (1) A process for producing a glass substrate provided with an aluminum oxide-containing silicon oxide film, which comprises applying a coating liquid containing an organopolysiloxane and an organic aluminum complex to a glass substrate within a temperature range of from 400 to 650° C. to form an aluminum oxide-containing silicon oxide film on the glass substrate, and (2) a process for producing a glass substrate comprising forming molten glass into a glass ribbon, annealing the glass ribbon and cutting it to produce a glass substrate, wherein a coating liquid containing an organopolysiloxane and an organic aluminum complex is applied to the glass ribbon at a position where the glass ribbon is within a temperature range of from 400 to 650° C. to form an aluminum oxide-containing silicon oxide film on the glass ribbon.
Abstract: To provide dense hollow particles having a thin shell, a process for simply producing the hollow particles at low cost, a coating composition for forming a coating film having a high antireflection property and an article having a coating film having a high antireflection property. Hollow particles each composed of a shell made of silicon oxide as the main component, wherein the thickness of the shell is from 0.5 to 4 nm, and in the histogram of the pore volume obtained by the nitrogen adsorption method, the maximum value of the pore volume is from 0.01 to 0.08 mL/g within the range of the pore diameter of at most 3 nm.
Abstract: A treated substrate having a hydrophilic region and a water repellent region, of which contrast is high on its surface; a process for producing a treated substrate, wherein the treated substrate can be produced with a low amount of light for a short time; wherein the water repellent region is made of a water repellent film formed by curing the composition (A) comprising a photopolymerization initiator and a compound (a) having at least one (meth)acryloyl group, and a water repellent moiety and having a film thickness of from 0.1 to 100 nm; the process uses a hydrophilic substrate or makes the surface thereof hydrophilic, then forms a film containing the composition (A) on the surface, then forms said water repellent film by irradiating light on a part of the film surface to cure the composition (A) and then removes an uncured composition (A) present thereon in order to expose the hydrophilic surface.
Abstract: It is to provide fine particles of copper, nickel or palladium hydride having an average particle diameter of at most 50 nm, which are hardly oxidized in the atmosphere and are excellent in storage stability and are thereby very suitable for formation of metallic materials, and their production process. Further, it is to provide a dispersion containing fine particles of copper, nickel or palladium hydride, which is excellent in storage stability, and a metallic material obtained by applying the dispersion, followed by baking. The fine particles of copper, nickel or palladium hydride and the dispersion thereof, to be obtained by the present invention, are applicable to various applications, and they can be used for e.g. formation and repair of printed wiring, etc. employing a dispersion, interlayer wiring in semiconductor packages, and joining of printed wiring boards and electronic components.
Abstract: To provide a method for producing an optically active (4E)-5-chloro-2-isopropyl-4-pentenoic acid, a basic amino acid salt thereof or an optically active (4E)-5-chloro-2-isopropyl-4-pentenoic acid ester with high yield and high optical purity by simple operation. An optically active (4E)-5-chloro-2-isopropyl-4-pentenoic acid is obtained by precipitating a basic amino acid salt of optically active (4E)-5-chloro-2-isopropyl-4-pentenoic acid from a solvent solution containing an optical isomer mixture of (4E)-5-chloro-2-isopropyl-4-pentenoic acid and an optically active basic amino acid or a salt thereof, and then the basic amino acid salt of optically active (4E)-5-chloro-2-isopropyl-4-pentenoic acid is subjected to a desalting reaction. Further, an esterification reaction is carried out to obtain an optically active (4E)-5-chloro-2-isopropyl-4-pentenoic acid ester.