Abstract: A method to recycle graphite from lithium and sodium-ion batteries. Graphite from the batteries first is treated in an aqueous solution of strong base at a temperature range between about 100° C. and about 250° C., a pressure range between about 0.9 bar and about 20 bar, at a solid-to-liquid ratio of from about 1-to-1 to about 1-to-4. The treated graphite is then washed, filtered, and then treated with a mineral acid (e.g., hydrochloric acid). The purified graphite is then coated with amorphous carbon at a weight percentage range between 0.5 wt % and about 20 wt %. The recycled graphite yielded by the method routinely achieves a purity >99.9%, a specific area of less than or equal to about 10 m2/g.
Type:
Application
Filed:
January 30, 2024
Publication date:
August 29, 2024
Applicants:
Mexichem Fluor Inc., Ascend Elements, Inc.
Abstract: The inventions described herein provide methods and systems for recycling lithium iron phosphate batteries, including: adding an oxidizing agent to a recycling stream of lithium iron phosphate (LiFePO4) batteries to form a leach solution; filtering the leach solution to remove a residue and obtain a lithium rich solution; modifying pH of the lithium rich solution for filtering impurities and obtaining a purified Li solution; and adding a precipitant to the purified Li solution thereby precipitating a lithium compound.
Abstract: A battery recycling process recovers lithium from nickel-rich cathode material in a recycling stream of end-of-life batteries. A dilute acid leach of a high nickel content cathode material contains a mixture of sulfuric acid based on a molar quantity of lithium in the cathode material. The highly selective leach generates a lithium rich solution with a small amount of nickel removable by nanofiltration to achieve a highly efficient recovery of the lithium contained in the recycling stream. A quantity of the leach acid based on the lithium content and a quantity of water based on a total black mass of the recycling stream results in a highly selective, near pure lithium leach when the recycling stream results from high nickel NMC batteries such as 811.