Patents Assigned to ASCENT VENTURES, LLC
  • Patent number: 11417309
    Abstract: An ultrasonic transducer that includes a delay line, an active piezoelectric element, and interposing metal conductive layer between the delay line and active piezoelectric element. The delay line and active piezoelectric element are joined so that ultrasonic waves may be coupled from the active piezoelectric element into the delay line or from the delay line into the active piezoelectric element. A via is formed, using a milling operation, in the active piezoelectric element to expose the edge of the interposing metal conductive layer between the delay line and active piezoelectric element. A conductive layer makes electrical contact between the interposing metal conductive layer and the surface of the active piezoelectric element to allow an electrical connection to be made from the surface of the active piezoelectric element to the interposing metal conductive layer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: August 16, 2022
    Assignee: ASCENT VENTURE, LLC.
    Inventors: James M Chwalek, Todd A Jackson
  • Publication number: 20200175958
    Abstract: An ultrasonic transducer that includes a delay line, an active piezoelectric element, and interposing metal conductive layer between the delay line and active piezoelectric element. The delay line and active piezoelectric element are joined so that ultrasonic waves may be coupled from the active piezoelectric element into the delay line or from the delay line into the active piezoelectric element. A via is formed, using a milling operation, in the active piezoelectric element to expose the edge of the interposing metal conductive layer between the delay line and active piezoelectric element. A conductive layer makes electrical contact between the interposing metal conductive layer and the surface of the active piezoelectric element to allow an electrical connection to be made from the surface of the active piezoelectric element to the interposing metal conductive layer.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 4, 2020
    Applicant: Ascent Ventures, LLC
    Inventors: James M. Chwalek, Todd A Jackson
  • Patent number: 9579788
    Abstract: Methods automatically and comprehensively self-test the operation, hardware, and programs of a robotic system to reveal problems in a robotic system. The system preferably evaluates repeatability of measurement by each distance sensor, an accuracy of measurement by each distance sensor, an accuracy of movement of any positioning joints used to position the robot arm, and an accuracy of at least one routine of the system control programs. The positioning joints may include one or more rotational joints or one or more translational joints. In some embodiments, the robotic system is a robotic pulse/echo layer thickness (PELT) system. When a robotic system has passed all of the tests, then the system performance has been verified. The inclusion of these self-tests allows a robotic PELT system owner to determine whether or not the robotic portion of a system is performing correctly.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 28, 2017
    Assignee: Ascent Ventures, LLC
    Inventors: Samuel Rosenberg, Todd Jackson
  • Patent number: 9310482
    Abstract: Methods and apparatus enable a robotic system to detect and determine the location, orientation, surface contours, and features of an object that are not otherwise accurately known in order to allow the robotic system to accurately place a pulse/echo layer thickness-gauge ultrasonic transducer gauge onto the surface of the object. The robotic system uses one or more distance measurement sensors to determine the position, orientation, local contour, and other features of the surface in relation to the robot. Another method calibrates an inaccurate distance sensor. Yet another method maintains overall system functionality in a system with multiple distance sensors in the event that one or more of the distance sensors fails. The robotic system may also determine when maintenance is required.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: April 12, 2016
    Assignee: Ascent Ventures, LLC
    Inventors: Samuel Rosenberg, Todd Jackson
  • Patent number: 8841823
    Abstract: A wear cap including a flexible barrel and a rigid disc enables a high-frequency ultrasonic transducer to properly align to the surface of a material to be tested. The wear cap may be employed for any type of contact sensor that requires a protective wear cap and that needs to align to the surface of a material to be tested. An ultrasonic transducer assembly includes a wear cap and an ultrasonic transducer. The ultrasonic transducer is mounted in the wear cap and includes a transducer body with a cylindrical shape. A method of producing a wear cap for an ultrasonic transducer includes selecting a flexible material, forming a flexible barrel from the flexible material, selecting a rigid material, forming a rigid disc from the rigid material, and affixing the rigid disc to an end of the flexible barrel.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 23, 2014
    Assignee: Ascent Ventures, LLC
    Inventor: Todd Jackson
  • Patent number: 8683882
    Abstract: A spherical bearing provides a passive apparatus that enables a contact sensor that needs to self-align to the surface of a test object. In some embodiments, the contact sensor is a transducer. This self-alignment apparatus may be used in a measurement system for aligning the face of a contact transducer to the surface of a material to be measured. The spherical bearing may be dry or may be lubricated with a liquid or with pressurized air to minimize the bearing friction and enable the transducer to self-align. The upper portion of the spherical bearing is preferably attached to a spring-loaded piston. The transducer is preferably attached to the lower portion of the spherical bearing. The spring-loaded piston holds the spherical bearing portions together and centers the floating lower bearing portion after each measurement operation. A cowling preferably retains the lower bearing portion between measurements.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 1, 2014
    Assignee: Ascent Ventures, LLC
    Inventor: Todd Jackson
  • Publication number: 20130211766
    Abstract: Methods and apparatus enable a robotic system to detect and determine the location, orientation, surface contours, and features of an object that are not otherwise accurately known in order to allow the robotic system to accurately place a pulse/echo layer thickness-gauge ultrasonic transducer gauge onto the surface of the object. The robotic system uses one or more distance measurement sensors to determine the position, orientation, local contour, and other features of the surface in relation to the robot. Another method calibrates an inaccurate distance sensor. Yet another method maintains overall system functionality in a system with multiple distance sensors in the event that one or more of the distance sensors fails. The robotic system may also determine when maintenance is required.
    Type: Application
    Filed: March 6, 2013
    Publication date: August 15, 2013
    Applicant: ASCENT VENTURES, LLC
    Inventor: Ascent Ventures, LLC
  • Publication number: 20130211782
    Abstract: Methods automatically and comprehensively self-test the operation, hardware, and programs of a robotic system to reveal problems in a robotic system. The system preferably evaluates repeatability of measurement by each distance sensor, an accuracy of measurement by each distance sensor, an accuracy of movement of any positioning joints used to position the robot arm, and an accuracy of at least one routine of the system control programs. The positioning joints may include one or more rotational joints or one or more translational joints. In some embodiments, the robotic system is a robotic pulse/echo layer thickness (PELT) system. When a robotic system has passed all of the tests, then the system performance has been verified. The inclusion of these self-tests allows a robotic PELT system owner to determine whether or not the robotic portion of a system is performing correctly.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: ASCENT VENTURES, LLC
    Inventors: Samuel Rosenberg, Todd Jackson
  • Publication number: 20130074601
    Abstract: A spherical bearing provides a passive apparatus that enables a contact sensor that needs to self-align to the surface of a test object. In some embodiments, the contact sensor is a transducer. This self-alignment apparatus may be used in a measurement system for aligning the face of a contact transducer to the surface of a material to be measured. The spherical bearing may be dry or may be lubricated with a liquid or with pressurized air to minimize the bearing friction and enable the transducer to self-align. The upper portion of the spherical bearing is preferably attached to a spring-loaded piston. The transducer is preferably attached to the lower portion of the spherical bearing. The spring-loaded piston holds the spherical bearing portions together and centers the floating lower bearing portion after each measurement operation. A cowling preferably retains the lower bearing portion between measurements.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ASCENT VENTURES, LLC
    Inventor: Todd Jackson
  • Publication number: 20130074602
    Abstract: A wear cap including a flexible barrel and a rigid disc enables a high-frequency ultrasonic transducer to properly align to the surface of a material to be tested. The wear cap may be employed for any type of contact sensor that requires a protective wear cap and that needs to align to the surface of a material to be tested. An ultrasonic transducer assembly includes a wear cap and an ultrasonic transducer. The ultrasonic transducer is mounted in the wear cap and includes a transducer body with a cylindrical shape. A method of producing a wear cap for an ultrasonic transducer includes selecting a flexible material, forming a flexible barrel from the flexible material, selecting a rigid material, forming a rigid disc from the rigid material, and affixing the rigid disc to an end of the flexible barrel.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ASCENT VENTURES, LLC
    Inventor: Todd Jackson