Abstract: The present invention relates to a modified and optimized Factor VIII or Factor IX nucleic acid for inclusion in a chimeric virus vector. Use of such vector can be used for treatment of hemophilia.
Abstract: A method of producing a packaged parvovirus vector, the method comprising: (a) providing an insect cell; (b) introducing into the insect cell one or more vectors comprising nucleotide sequences encoding: (i) a transgene flanked by TRs; and (ii) baculovirus packaging functions comprising Rep components and Cap components sufficient to result in packaging of infective parvovirus particles, wherein VP1 is supplemented relative to VP2 and VP3 sufficient to increase the production of infectious viral particles; and (c) introducing into the cell a nucleic acid encoding baculovirus helper functions for expression in the insect cell; (d) culturing the cell under conditions sufficient to produce the infectious packaged parvovirus vector.
Abstract: The present invention provides a series of novel dystrophin minigenes that retain the essential biological functions. The expression of the dystrophin minigenes may be controlled by a regulatory element along with a small polyadenylation signal. The entire gene expression cassettes may be readily packaged into a viral vector, preferably an AAV vector. The present invention further defines the minimal functional domains of dystrophin and provides ways to optimize and create new versions of dystrophin minigenes. Finally, the present invention provides a method of treatment for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD).
Abstract: The present invention provides a series of novel dystrophin minigenes that retain the essential biological functions. The expression of the dystrophin minigenes may be controlled by a regulatory element along with a small polyadenylation signal. The entire gene expression cassettes may be readily packaged into a viral vector, preferably an AAV vector. The present invention further defines the minimal functional domains of dystrophin and provides ways to optimize and create new versions of dystrophin minigenes. Finally, the present invention provides a method of treatment for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD).