Abstract: A two-stage converter including a buck converter and a DC-DC converter that receives power from the buck converter. The DC-DC converter generates an output voltage of the two-stage converter. A buck control circuit generates a drive signal for the buck converter. The drive signal is based on a first signal representing the output voltage, a second signal representing load applied to the buck converter, and a compensation signal. A characteristic of the compensation signal varies based on the drive signal.
Abstract: A power converter circuit includes an input switching circuit, an isolation circuit, a rectifier circuit that includes a least a pair of rectifiers, and an output circuit. The input switching circuit receives a first voltage and generates an AC voltage. The isolation circuit has a primary side configured to receive the AC voltage from the input switching circuit and a secondary side. The secondary side communicates with the rectifier circuit and the output circuit. The output circuit includes a secondary inductor and a diode. The secondary inductor communicates with a primary inductor and either the rectifier circuit or the secondary side. The diode communicates with the primary inductor, the secondary inductor, and the rectifier circuit. The secondary inductor inhibits current flow through the rectifier circuit and forces current flow through the diode when no voltage is applied to the primary side of the isolation circuit.
Abstract: A power converter circuit includes an input switching circuit, an isolation circuit, a rectifier circuit that includes a least a pair of rectifiers, and an output circuit. The input switching circuit receives a first voltage and generates an AC voltage. The isolation circuit has a primary side configured to receive the AC voltage from the input switching circuit and a secondary side. The secondary side communicates with the rectifier circuit and the output circuit. The output circuit includes a secondary inductor and a diode. The secondary inductor communicates with a primary inductor and either the rectifier circuit or the secondary side. The diode communicates with the primary inductor, the secondary inductor, and the rectifier circuit. The secondary inductor inhibits current flow through the rectifier circuit and forces current flow through the diode when no voltage is applied to the primary side of the isolation circuit.