Patents Assigned to Asterias Biotherapeutics, Inc.
  • Patent number: 9085756
    Abstract: This disclosure provides a system for producing pancreatic islet cells from embryonic stem cells. Differentiation is initiated towards endoderm cells, and focused using reagents that promote emergence of islet precursors and mature insulin-secreting cells. High quality populations of islet cells can be produced in commercial quantities for use in research, drug screening, or regenerative medicine.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: July 21, 2015
    Assignee: Asterias Biotherapeutic, Inc.
    Inventors: Gregory J. Fisk, Margaret S. Inokuma
  • Patent number: 9074181
    Abstract: This disclosure provides an improved system for culturing human embryonic stem cells. The cells are cultured in suspension so as to maximize the production capacity of the culture environment. The new culture system of this invention allows for bulk proliferation of hES cells in a more cost-effective manner, which facilitates commercial production of important products for use in human therapy.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: July 7, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Yan Li, Isabelle Nadeau-Demers
  • Patent number: 9074182
    Abstract: The invention provides methods for depleting extraneous phenotypes from a mixed population of cells comprising the in vitro differentiated progeny of primate pluripotent stem cells. The invention also provides mixed cell populations enriched for a target cell phenotype where the mixed cell population comprises the differentiated in vitro progeny of primate embryonic stem cells.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: July 7, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Jane S. Lebkowski, Catherine Ann Priest, Ross M. Okamura
  • Patent number: 9062289
    Abstract: The present application describes the new methods for the differentiation of primate pluripotent stem cells into cardiomyocyte-lineage cells. The methods utilize sequential culturing of the primate pluripotent stem cells in certain growth factors to produce cardiomyocyte-lineage cells. In certain embodiments of the invention, the population of cells produced by the sequential culturing is further enriched for cardiomyocyte-lineage cells so as to produce a higher percentage of those cells.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: June 23, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Joseph D. Gold, Mohammad Hassanipour
  • Patent number: 9023645
    Abstract: This invention provides a system for producing differentiated cells from a stem cell population for use wherever a relatively homogenous cell population is desirable. The cells contain an effector gene under control of a transcriptional control element (such as the TERT promoter) that causes the gene to be expressed in relatively undifferentiated cells in the population. Expression of the effector gene results in depletion of undifferentiated cells, or expression of a marker that can be used to remove them later. Suitable effector sequences encode a toxin, a protein that induces apoptosis; a cell-surface antigen, or an enzyme (such as thymidine kinase) that converts a prodrug into a substance that is lethal to the cell. The differentiated cell populations produced according to this disclosure are suitable for use in tissue regeneration, and non-therapeutic applications such as drug screening.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Joseph D Gold, Jane S Lebkowski
  • Patent number: 8951800
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 10, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
  • Publication number: 20140242691
    Abstract: This invention provides populations of neural progenitor cells, differentiated neurons, glial cells, and astrocytes. The populations are obtained by culturing stem cell populations (such as embryonic stem cells) in a cocktail of growth conditions that initiates differentiation, and establishes the neural progenitor population. The progenitors can be further differentiated in culture into a variety of different neural phenotypes, including dopaminergic neurons. The differentiated cell populations or the neural progenitors can be generated in large quantities for use in drug screening and the treatment of neurological disorders.
    Type: Application
    Filed: March 18, 2014
    Publication date: August 28, 2014
    Applicant: Asterias Biotherapeutics, Inc.
    Inventor: Melissa K. Carpenter
  • Publication number: 20140134721
    Abstract: This invention provides a system for obtaining cells of the chondrocyte lineage by differentiating primate pluripotent stem cells. The process involves culturing the cells as a micromass or other aggregate form in a cocktail of differentiation agents that facilitates outgrowth of the desired cell type. Progeny are capable of synthesizing Type II collagen or aggrecan, or other products that are characteristic of the chondrocyte lineage. Chondrocytes and chondrocyte precursor cells obtained according to this disclosure are suitable for use in both research and clinical therapy.
    Type: Application
    Filed: August 30, 2013
    Publication date: May 15, 2014
    Applicant: Asterias Biotherapeutics, Inc.
    Inventor: R. Scott Thies
  • Publication number: 20140106343
    Abstract: This disclosure provides a newly developed strategy and particular options for differentiating pluripotent stem cells into cells of the hepatocyte lineage. Many of the protocols are based on a strategy in which the cells are first differentiated into early germ layer cells, then into hepatocyte precursors, and then into mature cells. The cells obtained have morphological features and phenotypic markers characteristic of human adult hepatocytes. They also show evidence of cytochrome p450 enzyme activity, validating their utility for commercial applications such as drug screening, or use in the manufacture of medicaments and medical devices for clinical therapy.
    Type: Application
    Filed: August 27, 2013
    Publication date: April 17, 2014
    Applicant: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Saadia Faouzi, Isabelle Nadeau, Kristina Pfendler-Bonham, Namitha Rao, Melissa K. Carpenter, Lakshmi Rambhatla, Choy-Pik Chiu
  • Patent number: 8637311
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: January 28, 2014
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter