Patents Assigned to AstraZeneca Computational Pathology GmbH
  • Patent number: 11748981
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: September 5, 2023
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Patent number: 11651863
    Abstract: A method that provides a graphical indication of whether a patient will have cancer recurrence uses univariate and bivariate prognostic features that were generated as part of a minimal spanning tree (MST). The method determines the values of first and second features. A first value is measured by detecting objects in an image of tissue from the cancer patient stained with a protein-specific IHC biomarker. A second value is measured using objects marked with an mRNA-specific probe biomarker detected in the tissue. The first feature is the univariate prognostic feature for cancer recurrence in a cohort of cancer patients. A combination of the first and second features is the bivariate prognostic feature for cancer recurrence in the cohort. The first and second features are elements of the MST. Nodes of the MST represent the univariate features, edges represent the bivariate features, and edge weights represent prognostic significance of bivariate features.
    Type: Grant
    Filed: February 9, 2019
    Date of Patent: May 16, 2023
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventor: Guenter Schmidt
  • Patent number: 11593656
    Abstract: A convolutional neural network predicts which regions of a tissue slice would be stained by a first stain by training a model to identify those regions based only on tissue stained by a second stain. Thereafter the first stain need not be used to mark cancerous regions on other tissue slices that are stained with the second stain. The training slice is stained with a first immunohistochemical stain and a second counterstain. A target region of an image of the training slice is identified using image analysis based on the first stain. A set of parameters for associated mathematical operations are optimized to train the model to classify pixels of the image as belonging to the target region based on the second stain but not on the first stain. The trained parameters are stored in a database and applied to other images of tissue not stained with the first stain.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 28, 2023
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Tobias Wiestler, Simon Lanzmich, Nicolas Brieu, Guenter Schmidt, Moritz Widmaier
  • Patent number: 11348231
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: May 31, 2022
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Patent number: 11030744
    Abstract: A score of a histopathological diagnosis of cancer is generated by loading an image patch of an image into a processing unit, determining how many pixels of the image patch belong to a first tissue, processing additional image patches cropped from the image to determine how many pixels of each image patch belong to the first tissue, computing the score and displaying it along with the image on a graphical user interface. The image patch is cropped from the image of a slice of tissue that has been immunohistochemically stained using a diagnostic antibody. The first tissue comprises tumor epithelial cells that are positively stained by the diagnostic antibody. Determining how many pixels belong to the first tissue is performed by processing the image patch using a convolutional neural network. The score of the histopathological diagnosis is computed based on the total number of pixels belonging to the first tissue.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 8, 2021
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Ansh Kapil, Nicolas Brieu