Patents Assigned to AT ROBOTICS INC.
  • Patent number: 11420344
    Abstract: A sleeve apparatus for protecting a robotic kitchen arm from contamination. The sleeve includes a proximal end, a distal end, a passageway extending from the proximal end to the distal end, and an exterior surface. The passageway has an effective diameter less than the effective diameter of the robotic kitchen arm such that the exterior surface of the sleeve apparatus is substantially fold-free when the robotic arm is in the extended configuration. Methods of cleaning a robotic kitchen arm are also described.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: August 23, 2022
    Assignee: Miso Robotics, Inc.
    Inventors: Robert Anderson, David Zito, Grant Stafford, William Werst, Dev Kumar
  • Publication number: 20220257892
    Abstract: A system includes: a robot comprising an arm, the arm comprising a flange, the flange coupled to an end of the arm, the arm configured to move the flange along a degree of freedom; a mask coupled to the flange, the mask configured to deliver gas to a user, wherein the arm further comprises a kinematic mount, the kinematic mount usable to do one or more of orient and locate the mask with respect to the flange; a ventilator coupled to the mask, the ventilator configured to deliver the gas to the mask; a gas tube coupled to both the mask and the ventilator, the gas tube configured to carry gas between the ventilator and the mask; and a tracking system, the tracking system configured to capture image data of one or more of the mask and a face of the user.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Applicant: Restful Robotics, Inc.
    Inventors: Scott Nortman, David Jassir
  • Patent number: 11407110
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: August 9, 2022
    Assignee: Path Robotics, Inc.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Surag Balajepalli, Dylan Desantis
  • Patent number: 11407121
    Abstract: A proximity sensor apparatus has a detection electrode that forms an electrostatic capacitance between the detection electrode and an object to be detected. The detection electrode is fitted to an electrode base plate. The detection section detects electrostatic capacitance based on output of the detection electrode. The electrode base plate is supported by a push-button switch. When the object to be detected approaches the detection electrode, the electrostatic capacitance changes. Approach of the object to be detected can be detected by a change in electrostatic capacitance. When the object to be detected contacts the detection electrode, the push-button switch is turned on. The push-button switch is turned on, and thereby contact of the object to be detected can be detected.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: August 9, 2022
    Assignee: LIFE ROBOTICS INC.
    Inventors: Woo-Keun Yoon, Hiroaki Matsuda
  • Patent number: 11406052
    Abstract: Systems and methods for computer vision and automation to autonomously identify and deliver for application a treatment to an object among other objects, data science and data analysis, including machine learning, deep learning, and other disciplines of computer-based artificial intelligence to facilitate identification and treatment of objects, and robotics and mobility technologies to navigate a delivery system, more specifically, to an agricultural delivery system configured to identify and apply, for example, an agricultural treatment to an identified agricultural object. In some examples, a method may include identifying a subset of payloads to provide one or more actions based on data representing a policy for one or more subsets of agricultural objects, causing one or more cartridges to be charged based on the subset of payloads, and, and implementing one or more cartridges at an agricultural projectile delivery system.
    Type: Grant
    Filed: December 21, 2019
    Date of Patent: August 9, 2022
    Assignee: Verdant Robotics, Inc.
    Inventors: Gabriel Thurston Sibley, Curtis Dale Garner, Andre Robert Daniel Michelin, Lorenzo Ibarria, Patrick Christopher Leger, Benjamin Rewis, Shi Yan
  • Patent number: 11406097
    Abstract: Various embodiments of an apparatus, methods, systems and computer program products described herein are directed to an agricultural observation and treatment system and method of operation. The agricultural treatment system determines a vehicle pose of a vehicle as the vehicle moves along a path. The system identifies a first target agricultural object for treatment. Based on the determined vehicle pose, the system positions a treatment head of a first treatment unit such that a first projectile fluid may be emitted by the first treatment unit at the identified first target agricultural object. The system then causes an emitter to emit a fluid from the treatment head at the first target agricultural object.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: August 9, 2022
    Assignee: Verdant Robotics, Inc.
    Inventors: Gabriel Thurston Sibley, Lorenzo Ibarria, Curtis Dale Garner, Patrick Christopher Leger, Wisit Jirattigalochote
  • Patent number: 11401690
    Abstract: This description provides an autonomous or semi-autonomous earth shaping vehicle that is capable of cooperatively filling earth into a fill location in a dig site. A first earth shaping vehicle configured with a hauling tool carrying a volume of earth navigates to the fill location. At the fill location, the first earth shaping vehicle navigates over a target tool path to fill earth from the hauling tool into the fill location. As the first earth shaping vehicle fills earth into the fill location, a measurement sensor coupled to the first earth shaping vehicle measures a compaction level of earth filled into the fill location. If the measured compaction level is determined to be below a threshold compaction level, the first earth shaping vehicle communicates a request for a second earth shaping vehicle configured with a compaction tool to compact earth in the fill location.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 2, 2022
    Assignee: BUILT ROBOTICS INC.
    Inventors: Noah Austen Ready-Campbell, Andrew Liang, Evan West, Lucas Bruder, Gaurav Jitendra Kikani, Pradeesh Suganthan, James Emerick, Ammar Kothari, Alan Argondizza, Sarah Thornton, Hee Gu Yea, Thomas Pech
  • Patent number: 11399857
    Abstract: A surgical device controllable by a surgical robotic system is provided. The surgical device includes a housing capable of being coupled to the surgical robotic system; a drive system at least partially mounted in the housing; and a shaft rotatably coupled to the drive system at a first end of the shaft. The surgical device further includes a tissue-removal assembly coupled to the second end of the shaft. The tissue-removal assembly includes a first cutting member having a plurality of rotatable blades. The first cutting member is coupled to a second end of the shaft. The tissue-removal assembly further includes a second cutting member, one or more support elements slidably or fixedly coupled to the second cutting member, and one or more extendable elements slidably or fixedly coupled to the second cutting member.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: August 2, 2022
    Assignee: Vista Robotics, Inc.
    Inventors: Sing-Fatt Chin, Baogen Wang
  • Patent number: 11401689
    Abstract: An excavation vehicle capable of autonomously actuating an excavation tool or navigating an excavation vehicle to perform an excavation routine within an excavation site is described herein. Sensors mounted to the excavation vehicle and the excavation tool produce signals representative of a position and orientation of the corresponding joint relative on the excavation vehicle relative to the excavation site, a position and orientation of the excavation vehicle relative to the excavation site, and one or more features of the excavation site based on the position of the excavation vehicle within the excavation site. A set of solenoids are configured to couple to corresponding hydraulic valves of the excavation tool to actuate the valve. A controller produces actuating signals to control the joints of the excavation tool to autonomously perform the excavation routine based on the signals produced by the sensors.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: August 2, 2022
    Assignee: BUILT ROBOTICS INC.
    Inventors: Noah Austen Ready-Campbell, Andrew Xiao Liang, Christian John Wawrzonek, Gaurav Jitendra Kikani, James Alan Emerick, Lucas Allen Bruder, Ammar Idris Kothari
  • Patent number: 11399531
    Abstract: A method includes receiving sensor inputs including one or more images comprising one or more agricultural objects; continuously performing a pose estimation of the treatment system based on sensor inputs that are time synchronized and fused; identifying the one or more agricultural objects as target objects; tracking the one or more agricultural objects identified by the analyzing; controlling an orientation of the treatment mechanism according to the pose estimation for targeting the one or more agricultural objects; and activating the treatment mechanism to treat the one or more agricultural objects according to the orientation.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: August 2, 2022
    Assignee: VERDANT ROBOTICS, INC.
    Inventors: Gabriel Thurston Sibley, Lorenzo Ibarria, Curtis Dale Garner, Patrick Christopher Leger
  • Publication number: 20220233917
    Abstract: A system includes wearable devices positioned on a subject in different locations. Each wearable device includes motion sensors that measure the subject's movement in three dimensions. The motion sensors generate raw sensory data as the subject performs a physical movement. A data filter is selected based on a condition of the subject and a designated movement corresponding to the physical movement, and used to convert the raw sensory data into formatted data. A level of compliance of the physical movement with a movement model for the designated movement is determined by applying comparative modeling techniques to the formatted data and the movement model. Real-time feedback is delivered dynamically to the subject by the wearable devices during the performance of the physical movement based on the level of compliance. The movement model can be generated, and the comparative modeling techniques can be selected, based on the condition of the subject.
    Type: Application
    Filed: April 19, 2022
    Publication date: July 28, 2022
    Applicant: Xperience Robotics, Inc.
    Inventor: Ankit Shah
  • Patent number: 11396099
    Abstract: Various embodiments for enforcing safe operation of machinery performing an activity in a three-dimensional (3D) workspace includes computationally generating a 3D spatial representation of the workspace; computationally mapping 3D regions of the workspace corresponding to space occupied by the machinery and a human; and based thereon, restricting operation of the machinery in accordance with a safety protocol during physical performance of the activity.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: July 26, 2022
    Assignee: Veo Robotics, Inc.
    Inventors: Marek Wartenberg, Paul Jakob Schroeder, Brad C. Mello, Clara Vu, Scott Denenberg, Nicole Aucoin, Alberto Moel
  • Patent number: 11390277
    Abstract: Systems and methods for self-driving collision prevention are presented. The system comprises a self-driving vehicle safety system, having one or more sensors in communication with a control system. The control system is configured determine safety fields and instruct the sensors to scan a region corresponding to the safety fields. The control system determines exclusion regions, and omits the exclusion regions from the safety field. The safety system may also include capability reduction parameters that can be used to constrain the drive system of the vehicle, for example, by restricting turning radius and speed in accordance with the safety fields.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: July 19, 2022
    Assignee: Clearpath Robotics Inc.
    Inventors: Matthew Lord, Ryan Christopher Gariepy, Peiyi Chen, Michael Irvine, Alex Bencz
  • Patent number: 11392121
    Abstract: Systems and methods for operating robotic equipment in a controlled zone are presented. The system comprises one or more self-driving material-transport vehicles having at least one sensor, non-transitory computer-readable media, and a processor in communication with the at least one sensor and media. The media stores computer instructions that configure the processor to move the vehicle towards the controlled zone in a normal mode of operation, capture environmental data associated with the controlled zone using the at least one sensor, determine environmental-change data based on comparing the captured environmental data with known-good environmental data, and operating the vehicle in a safe mode of operation based on the environmental-change data.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: July 19, 2022
    Assignee: Clearpath Robotics Inc.
    Inventors: Simon Drexler, Ryan Christopher Gariepy
  • Patent number: 11389955
    Abstract: Exemplary embodiments relate to the use of servo-pneumatic control systems for actuation and de-actuation of soft robotic actuators. Apparatuses and methods are disclosed for using a servo-pneumatic control system in fluid communication with the soft robotic actuator and configured to maintain a closed loop in which at least one of pressure, mass of fluid, or volume of fluid is controlled within the soft robotic actuator. The embodiments may be used to prevent deformation of grasped objects; detect grasping, collision, and releasing objects; and other operations with a rapid servo-pneumatic response.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: July 19, 2022
    Assignee: Soft Robotics, Inc.
    Inventors: Ryan Knopf, Joshua Aaron Lessing
  • Publication number: 20220219903
    Abstract: An order fulfillment and delivery system for autonomously fulfilling orders while en route to a delivery location. The system includes a delivery vehicle having a storage area, a robotic system at least partially disposed within the storage area and one or more processors. The one or more processors being configured to receive an order of one or more inventory items, generate container retrieval instructions for the robotic system to perform based on the received order and transmit to the robotic system the container retrieval instructions to perform. The robot system includes a container retrieval device movable in at least two dimensions to engage and move a container, based upon the container retrieval instructions, from a first location within the delivery vehicle to a second location within the delivery vehicle.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: Nimble Robotics, Inc.
    Inventor: Simon Kalouche
  • Patent number: 11385646
    Abstract: This description provides an autonomous or semi-autonomous earth shaping vehicle that is capable of cooperatively executing an earth shaping routine in a dig site with other earth shaping vehicles. A first earth shaping vehicle configured with a tool for excavating earth navigates to a dig location containing earth to be excavated. The first earth shaping vehicle identifies a loading location where the first vehicle may transfer earth to a second earth shaping vehicle configured with a tool for hauling earth between locations. Upon navigating to the loading location and detecting the second earth shaping vehicle at the loading location, the first earth shaping vehicle transfers earth from its excavation tool to the hauling tool of the second earth shaping vehicle.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: July 12, 2022
    Assignee: Built Robotics Inc.
    Inventors: Noah Austen Ready-Campbell, Andrew Liang, Evan West, Lucas Bruder, Gaurav Jitendra Kikani, Pradeesh Suganthan, James Emerick, Ammar Kothari, Alan Argondizza, Sarah Thornton, Hee Gu Yea, Thomas Pech
  • Patent number: 11385649
    Abstract: A system includes an inspection robot for performing an inspection on an inspection surface with an inspection robot, the apparatus comprising a position definition circuit structured to determine an inspection robot position on the inspection surface; a data positioning circuit structured to interpret inspection data, and to correlate the inspection data to the inspection robot position on the inspection surface; and wherein the data positioning circuit is further structured to determine position informed inspection data in response to the correlating of the inspection data with the inspection robot position, wherein the position informed inspection data comprises absolute position data.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 12, 2022
    Assignee: Gecko Robotics, Inc.
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Patent number: 11385650
    Abstract: Systems and methods for an inspection robot having replaceable sensor sled portions are disclosed. An example system may include: an inspection robot including a plurality of payloads; a plurality of arms, each of the plurality of arms pivotally mounted to one of the plurality of payloads; and a plurality of sleds, each sled mounted to one of the plurality of arms. At least one of the plurality of sleds includes an upper portion coupled to a replaceable lower portion, where the replaceable lower portion includes a portion of a delay line for a sensor of the inspection robot.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: July 12, 2022
    Assignee: Gecko Robotics, Inc.
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Patent number: 11386289
    Abstract: Disclosed herein are embodiments related to robot-aided product inspection. For example, an inspection apparatus may include a processing device to communicatively couple to a robotic apparatus, to a display device, and to a user input device. The processing device may: receive an image of an item, wherein the image was captured by the robotic apparatus; generate a proposed classification for the image, wherein the classification indicates an attribute of the item based on the image; cause the image to be displayed on the display device along with the proposed classification; and receive an indication from the user input device of a final classification of the image.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: July 12, 2022
    Assignee: Elementary Robotics, Inc.
    Inventors: Arye Barnehama, Xuefei Dong, Dat Do, Nambi Srivatsav, Petr Lipay, Dan Pipe-Mazo