Patents Assigned to ATC Materials Inc.
  • Patent number: 11365155
    Abstract: A moldable green-body composite includes milling silicon nitride powder with a solvent and adding a surface modifier to the milled slurry to modify a surface of the silicon nitride particles. A polysiloxane in a solvent and a binder are also added to create a green body slurry. The solvents may be polar or non-polar solvents. A sintering aid, such as yttria-alumina, may be added to the slurry as well. A reduced density silicon nitride ceramic is made from the moldable green-body composite by molding the moldable green-body composite in a mold and curing at a curing temperature to convert the moldable green-body composite to a converted composite. The converted composite can then be sintered to form a reduced density silicon nitride ceramic that has a smooth surface finish and requires no post machining or polishing. The reduced density silicon nitride ceramic may also have very good dielectric properties.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: June 21, 2022
    Assignee: ATC Materials Inc
    Inventor: Mark Hawthorne
  • Patent number: 10968139
    Abstract: A moldable green-body composite includes milling silicon nitride powder with a solvent and adding a surface modifier to the milled slurry to modify a surface of the silicon nitride particles. A polysiloxane in a solvent and a binder are also added to create a green body slurry. The solvents may be polar or non-polar solvents. A sintering aid, such as yttria-alumina, may be added to the slurry as well. A reduced density silicon nitride ceramic is made from the moldable green-body composite by molding the moldable green-body composite in a mold and curing at a curing temperature to convert the moldable green-body composite to a converted composite. The converted composite can then be sintered to form a reduced density silicon nitride ceramic that has a smooth surface finish and requires no post machining or polishing. The reduced density silicon nitride ceramic may also have very good dielectric properties.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: April 6, 2021
    Assignee: ATC Materials, Inc.
    Inventor: Mark Hawthorne
  • Patent number: 10693223
    Abstract: A tri-band multiwall radome includes a dense polymeric strike plate that is configured on the outside of the radome, a capture layer and a tuning layer. The polymeric strike plate is a tough polymer, such as a polycarbonate and breaks a bullet into fragments that are more easily captured by the capture layer. The capture layer includes a number of fabric sheets of highly oriented fibers, such as polyethylene fibers, and a binder. The tuning layer may be a low density foam that is configured inside of the capture layer and provided to reduce reflective losses and improve ballistic performance. A tri-band radome cover may have a dB loss over a wavelength of 8 to 40 kHz of no more than 1 dB. A tri-band radome cover may be formed in a dome shape.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 23, 2020
    Assignee: ATC Materials Inc.
    Inventor: Mark Hawthorne
  • Patent number: 10290935
    Abstract: A tri-band multiwell radome includes a dense polymeric strike plate that is configured on the outside of the radome, a capture layer and a tuning layer. The polymeric strike plate is a tough polymer, such as a polycarbonate and breaks a bullet into fragments that are more easily captured by the capture layer. The capture layer includes a number of fabric sheets of highly oriented fibers, such as polyethylene fibers, and a binder. The tuning layer may be a low density foam that is configured inside of the capture layer and provided to reduce reflective losses and improve ballistic performance. A tri-band radome cover may have a dB loss over a wavelength of 8 to 40 kHz of no more than 1 dB. A tri-band radome cover may be formed in a dome shape.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: May 14, 2019
    Assignee: ATC Materials Inc.
    Inventor: Mark Hawthorne