Patents Assigned to Atom Nanoelectronics, Inc
-
Publication number: 20210032107Abstract: Single-walled nanotubes for use as additives in energetic materials, and methods for synthesizing such materials are described. The single-walled carbon nanotube (SWNT) additives comprise a mixture of high-purity SWNT and carbon encapsulated iron nanoparticles. The SWNT mixtures may comprise no more than 5% non-SWNT carbon, and the iron nanoparticles may be from 2-5 nm. The method of synthesizing the SWNTs may comprise a high-pressure carbon monoxide (HiPCO) process. The SWNT mixtures may be adapted for use as additives in energetic processes, such as, for example, rocket motors.Type: ApplicationFiled: February 24, 2020Publication date: February 4, 2021Applicant: Atom Nanoelectronics, Inc.Inventors: Sean R. Walsh, Christopher L. Harris
-
Patent number: 10418595Abstract: Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.Type: GrantFiled: August 23, 2016Date of Patent: September 17, 2019Assignee: Atom Nanoelectronics, Inc.Inventor: Huaping Li
-
Publication number: 20180323406Abstract: Devices, structures, materials and methods for carbon enabled vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Carbon electrodes (such as from graphene) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, carbon electrodes and relevant substrates and gates are utilized to construct LETs, including heterojunction VOLETs.Type: ApplicationFiled: May 4, 2018Publication date: November 8, 2018Applicant: Atom Nanoelectronics, Inc.Inventor: Huaping Li
-
Publication number: 20180323388Abstract: Methods for producing and integrating single-walled carbon nanotubes (SWCNT) into existing TFT backplane manufacturing lines are provided. In contrast to LTPS and oxide TFT backplanes, SWCNT TFT backplanes exhibit either equivalent or better figures of merit such as high field emission mobility, low temperature fabrication, good stability, uniformity, scalability, flexibility, transparency, mechanical deformability, low voltage and low power, bendability and low cost. Methods and processes for integrating SWCNTs technologies into existing TFT backplane manufacturing lines, pilot test and mass production can start without additional capex needs are also provided.Type: ApplicationFiled: May 8, 2017Publication date: November 8, 2018Applicant: Atom Nanoelectronics, Inc.Inventor: Huaping Li
-
Publication number: 20180148337Abstract: Single-walled nanotubes for use as additives in energetic materials, and methods for synthesizing such materials are described. The single-walled carbon nanotube (SWNT) additives comprise a mixture of high-purity SWNT and carbon encapsulated iron nanoparticles. The SWNT mixtures may comprise no more than 5% non-SWNT carbon, and the iron nanoparticles may be from 2-5 nm. The method of synthesizing the SWNTs may comprise a high-pressure carbon monoxide (HiPCO) process. The SWNT mixtures may be adapted for use as additives in energetic processes, such as, for example, rocket motors.Type: ApplicationFiled: November 30, 2017Publication date: May 31, 2018Applicant: Atom Nanoelectronics, Inc.Inventors: Sean R. Walsh, Christopher L. Harris
-
Patent number: 9748439Abstract: An active matrix light emitting diodes display module integrated with single-walled carbon nanotubes control circuits includes a light emitting diode pixel having a crystalline semiconductor light emitting diode, single-walled carbon nanotubes switching transistors and a charge storage capacitor.Type: GrantFiled: May 31, 2016Date of Patent: August 29, 2017Assignee: ATOM NANOELECTRONICS, INC.Inventors: Huaping Li, Hongyu Liu
-
Publication number: 20160359144Abstract: Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.Type: ApplicationFiled: August 23, 2016Publication date: December 8, 2016Applicant: Atom Nanoelectronics, Inc.Inventor: Huaping Li
-
Publication number: 20160329378Abstract: An active matrix light emitting diodes display module integrated with single-walled carbon nanotubes control circuits includes a light emitting diode pixel having a crystalline semiconductor light emitting diode, single-walled carbon nanotubes switching transistors and a charge storage capacitorType: ApplicationFiled: May 31, 2016Publication date: November 10, 2016Applicant: ATOM NANOELECTRONICS, INC.Inventors: Huaping LI, Hongyu LIU
-
Patent number: 9455421Abstract: Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.Type: GrantFiled: November 21, 2014Date of Patent: September 27, 2016Assignee: Atom Nanoelectronics, Inc.Inventor: Huaping Li
-
Patent number: 9379166Abstract: An active matrix light emitting diodes display module integrated with single-walled carbon nanotubes control circuits includes a light emitting diode pixel having a crystalline semiconductor light emitting diode, single-walled carbon nanotubes switching transistors and a charge storage capacitor.Type: GrantFiled: December 19, 2014Date of Patent: June 28, 2016Assignee: ATOM NANOELECTRONICS, INC.Inventors: Huaping Li, Hongyu Liu
-
Publication number: 20150155430Abstract: Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.Type: ApplicationFiled: November 21, 2014Publication date: June 4, 2015Applicant: Atom Nanoelectronics, Inc.Inventor: Huaping Li
-
Patent number: 8940562Abstract: The present disclosure provides the ability to produce backplanes for AMLCD and AMOLED. Specifically, each and every component of the backplanes can be printed. Depending on the resolution and screen size of the displays, backplanes can include over a million different components that must be printed that include components of the thin film transistor (TFT) and electrodes to address each of those TFTs. Even a slight misregistry of components during printing can lead to failure of one or more pixels, potentially rendering the entire display unsuitable for use. The present disclosure provides the ability to reproducibly and accurately print each and every component of the backplane for both AMLCD and AMOLED. The ability to completely print backplanes provides numerous advantages, such as reduced costs, improved throughput, more environmental friendliness, and the like.Type: GrantFiled: July 21, 2014Date of Patent: January 27, 2015Assignee: Atom Nanoelectronics, IncInventor: Huaping Li