Patents Assigned to Aurora Networks, Inc.
  • Patent number: 9979483
    Abstract: Receiving a plurality of optical signals from a plurality of optical paths using a single optical receiver having a large-area photodiode having an active area that is optically coupled to the plurality of optical paths provides significant commercial advantages such as lower cost as well as reduced size and maintenance.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 22, 2018
    Assignee: Aurora Networks, Inc.
    Inventor: Sudhesh Mysore
  • Patent number: 9967601
    Abstract: Interleaving multiple streams of data using a universal services multiplexer is followed by conveying a time interleaved multiplexer stream to a remote QAM module. A universal services multiplexer interleaves multiple streams of data into a time interleaved multiplexer stream.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: May 8, 2018
    Assignee: Aurora Networks, Inc.
    Inventors: Michael Field, Javier A Solis, Rei Chen Brockett, Dave Baran
  • Patent number: 9860053
    Abstract: Synchronizing SBS suppressing optical phase/frequency modulation of each of a plurality of optical transmitters can be achieved with a plurality of optical transmitters conveying a plurality of optical carriers; and a synchronizer coupled to each of the plurality of optical transmitters to synchronize the SBS suppressing optical phase/frequency modulation of each of the plurality of optical carriers.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: January 2, 2018
    Assignee: Aurora Networks, Inc.
    Inventors: Brian Ishaug, Sudhesh Mysore
  • Patent number: 9774393
    Abstract: A bidirectional optical fiber path includes a primary optical fiber path; a secondary optical fiber path coupled to the primary optical fiber path; an optical coupler coupled to both the primary optical fiber path and the secondary optical fiber path; an optical switch coupled to both the primary optical fiber path and the secondary optical fiber path, the optical switch selecting a path of lower optical loses; an optical cross-bar switch coupled to both the primary optical fiber path and the secondary optical fiber path and located between the optical coupler and the optical switch; a primary upstream light detector coupled to the primary optical path between the optical cross bar switch and the optical switch; a secondary upstream light detector coupled to the secondary optical path between the optical cross bar switch and the optical switch; a primary downstream light detector coupled to the primary optical path between the optical cross bar switch and the optical switch; a secondary downstream light detec
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: September 26, 2017
    Assignee: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Krzysztof Pradzynski
  • Patent number: 9647764
    Abstract: A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component, an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: May 9, 2017
    Assignee: Aurora Networks, Inc.
    Inventor: Sudhesh Mysore
  • Patent number: 9577767
    Abstract: Preventing optical beat interference includes dynamically managing an adjustable optical transmitter wavelength of each of a plurality of customer premises equipment, wherein each of the plurality of customer premises equipment is in bidirectional communication with a customer premises equipment controller. A bidirectional communication system includes a customer premises equipment controller; and a plurality of customer premises equipment coupled to the customer premises equipment controller, each of the plurality of customer premises equipment having an adjustable optical transmitter wavelength, wherein each of the plurality of customer premises equipment is in bidirectional communication with the customer premises equipment controller to prevent optical beat interference by dynamically managing the adjustable optical transmitter wavelength of each of the plurality of customer premises equipment.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: February 21, 2017
    Assignee: Aurora Networks, Inc.
    Inventors: Ketan Gadkari, Zulfikar Morbi, Daryoosh Rejaly, Steven Hopkins
  • Patent number: 9455778
    Abstract: A method and system for protecting against communication loss or disruption in an optical network system includes a signal state detector, which can measure received optical signals and determine if their strength is sufficient to support reliable communications. If the signal state detector informs the control circuit that the received optical signal is too low to support communications with the data service hub (or if there is no signal at all, such as in a severance of an optical waveguide), then the control circuit can instruct the data switch to re-route communications from the primary communication path to a secondary or back up communication path. This switching or re-routing of communications from a primary communication path which is non-functional or inoperative to an operational and fully functional communication path (a back up or secondary communication path) can be completed in a very short time, such as within fifty milliseconds or less.
    Type: Grant
    Filed: October 6, 2013
    Date of Patent: September 27, 2016
    Assignee: Aurora Networks, Inc.
    Inventors: Weyl K. Wang, James O. Farmer
  • Publication number: 20160241337
    Abstract: A bidirectional optical fiber path includes a primary optical fiber path; a secondary optical fiber path coupled to the primary optical fiber path; an optical coupler coupled to both the primary optical fiber path and the secondary optical fiber path; an optical switch coupled to both the primary optical fiber path and the secondary optical fiber path, the optical switch selecting a path of lower optical loses; an optical cross-bar switch coupled to both the primary optical fiber path and the secondary optical fiber path and located between the optical coupler and the optical switch; a primary upstream light detector coupled to the primary optical path between the optical cross bar switch and the optical switch; a secondary upstream light detector coupled to the secondary optical path between the optical cross bar switch and the optical switch; a primary downstream light detector coupled to the primary optical path between the optical cross bar switch and the optical switch; a secondary downstream light detec
    Type: Application
    Filed: February 17, 2016
    Publication date: August 18, 2016
    Applicant: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Krzysztof Pradzynski
  • Patent number: 9356726
    Abstract: Configuring an optical point to multipoint communication network includes assigning a channel number Ci by modular arithmetic to each of a plurality of N access points, each of the plurality of N access points i) including a laser and ii) coupled to a hub having a shared optical receiver; and tuning the laser located in each of the plurality of N access points to a wavelength ?ui that is one of a set of M wavelengths as a function of the channel number assigned to the access point in which the laser is located, a channel spacing ?? and an intrinsic wavelength ?uin of the laser to prevent optical beat interference at the shared optical receiver.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: May 31, 2016
    Assignee: Aurora Networks, Inc.
    Inventors: Daryoosh Rejaly, Ketan Gadkari, Zulfikar Morbi, Sudhesh Mysore, Steve Hopkins
  • Publication number: 20160056895
    Abstract: A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component., an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit.
    Type: Application
    Filed: October 6, 2015
    Publication date: February 25, 2016
    Applicant: AURORA NETWORKS, INC.
    Inventor: Sudhesh Mysore
  • Patent number: 9160457
    Abstract: A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component, an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: October 13, 2015
    Assignee: AURORA NETWORKS, INC.
    Inventor: Sudhesh Mysore
  • Publication number: 20150078759
    Abstract: A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component, an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit.
    Type: Application
    Filed: June 11, 2014
    Publication date: March 19, 2015
    Applicant: AURORA NETWORKS, INC.
    Inventor: Sudhesh Mysore
  • Patent number: 8917991
    Abstract: In fiber-to-the-home (FTTH) RF over Glass (RFoG) Architecture a customer-premise-equipment (CPE) includes a wavelength separator. A method includes up-converting a baseband upstream data signal to a frequency band above a frequency band of a baseband downstream data signal; combining the up-converted upstream data signal with an upstream cable return signal; transmitting the up-converted upstream data signal and the upstream cable return signal using a single upstream laser; and separating, with a wavelength separator, A) a downstream data signal and a downstream cable feed signal from B) the combined up-converted upstream data signal and upstream cable return signal.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: December 23, 2014
    Assignee: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Charles Barker, Oleh Sniezko, Krzysztof Pradzynski
  • Publication number: 20140369689
    Abstract: Preventing optical beat interference includes dynamically managing an adjustable optical transmitter wavelength of each of a plurality of customer premises equipment, wherein each of the plurality of customer premises equipment is in bidirectional communication with a customer premises equipment controller. A bidirectional communication system includes a customer premises equipment controller; and a plurality of customer premises equipment coupled to the customer premises equipment controller, each of the plurality of customer premises equipment having an adjustable optical transmitter wavelength, wherein each of the plurality of customer premises equipment is in bidirectional communication with the customer premises equipment controller to prevent optical beat interference by dynamically managing the adjustable optical transmitter wavelength of each of the plurality of customer premises equipment.
    Type: Application
    Filed: May 15, 2014
    Publication date: December 18, 2014
    Applicant: Aurora Networks, Inc.
    Inventors: Ketan Gadkari, Zulfikar Morbi, Daryoosh Rejaly, Steven Hopkins
  • Patent number: 8891670
    Abstract: A method includes reading operation parameters from a non-volatile memory located in a pluggable module that is coupled to a host module; processing the operational parameters with a processor located in the host module to control operation of a predistortion circuit located in the host module; adding predistortion to a signal with the predistortion circuit located in the host module and then sending the predistorted signal to the pluggable module. An apparatus includes a host module including a predistortion circuit and a processor coupled to the predistortion circuit; and a pluggable module coupled to the host module, wherein the pluggable module includes a non-volatile memory containing operational parameters for the predistortion circuit of the host module, wherein the operational parameters are processed by the processor of the host module to control the predistortion circuit of the host module.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: November 18, 2014
    Assignee: Aurora Networks, Inc.
    Inventor: Brian Ishaug
  • Patent number: 8849108
    Abstract: A method includes detecting wavelength collision including identifying a pair or pairs of ONTs that transmit the colliding wavelengths and recovering from collision wherein wavelengths of the pair or pairs of ONTs that cause collisions are re-adjusted to eliminate the collision.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 30, 2014
    Assignee: Aurora Networks Inc
    Inventors: Krzysztof Pradzynski, Sudhesh Mysore, Oleh Sniezko
  • Patent number: 8756645
    Abstract: Configuring a generic adaptable reconfigurable digital receiver having a programmable signal conditioner includes specifying a number of output RF channels; specifying an RF bandwidth of an output channel; and selecting a digital to analog sampling rate of a digital to analog convertor of the programmable signal conditioner as a function of the RF bandwidth of the output channel using a processor/demux of the generic adaptable reconfigurable digital receiver.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: June 17, 2014
    Assignee: Aurora Networks, Inc.
    Inventors: Krzysztof Pradzynski, Sudhesh Mysore, Oleh Sniezko
  • Patent number: 8682162
    Abstract: A return path system includes inserting RF packets between regular upstream data packets, where the data packets are generated by communication devices such as a computer or interne telephone. The RF packets can be derived from analog RF signals that are produced by legacy video service terminals. In this way, the present invention can provide an RF return path for legacy terminals that shares a return path for regular data packets in an optical network architecture.
    Type: Grant
    Filed: June 19, 2011
    Date of Patent: March 25, 2014
    Assignee: Aurora Networks, Inc.
    Inventors: James O. Farmer, Deven J. Anthony, Stephen A. Thomas, Patrick W. Quinn
  • Patent number: 8594506
    Abstract: A method and system can propagate upstream cable modem signals and radio-frequency (RF) return video control signals over the same passive optical network (PON). The method and system can include various combinations of hardware and software to support this operation. Three exemplary embodiments of optical network terminals (ONT) of a DPON system improve performance of the system by ensuring that, in the event the upstream transmitters of two ONTs are turned on simultaneously, they will not interfere with each other. The system is designed such that in a situation of competing transmissions, the one which is received and processed by the head end out of two competing transmissions originating from a set top box and a cable modem, will be the one originating from the cable modem, which may use the DOCSIS cable modem protocol.
    Type: Grant
    Filed: February 10, 2013
    Date of Patent: November 26, 2013
    Assignee: Aurora Networks, Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey
  • Patent number: 8577220
    Abstract: A method and system for protecting against communication loss or disruption in an optical network system includes a signal state detector, which can measure received optical signals and determine if their strength is sufficient to support reliable communications. If the signal state detector informs the control circuit that the received optical signal is too low to support communications with the data service hub (or if there is no signal at all, such as in a severance of an optical waveguide), then the control circuit can instruct the data switch to re-route communications from the primary communication path to a secondary or back up communication path. This switching or re-routing of communications from a primary communication path which is non-functional or inoperative to an operational and fully functional communication path (a back up or secondary communication path) can be completed in a very short time, such as within fifty milliseconds or less.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: November 5, 2013
    Assignee: Aurora Networks, Inc.
    Inventors: Weyl K. Wang, James O. Farmer