Abstract: An extended depth of field is achieved by a computational imaging system that combines a multifocal imaging subsystem for producing a purposefully blurred intermediate image with a digital processing subsystem for producing a recovered image having an extended depth of field. The multifocal imaging system preferably exhibits spherical aberration as the dominant feature of the purposeful blur. A central obscuration of the multifocal imaging subsystem renders point-spread functions of object points more uniform over a range of object distances. An iterative digital deconvolution algorithm for converting the intermediate image into the recovered image contains a metric parameter that speeds convergence, avoids stagnations, and enhances image quality.
Abstract: Computer software for and a method of calculating ring-wedge data from a digital image by performing a discrete Fourier transform of the digital image. A discrete autocorrelation, discrete cosine transform, and/or Hadamard transform is also preferably performed, together with providing the results to a neural network (most preferably a fully connected, three-layer, feed-forward neural network with sigmoidal activation functions) to perform pattern recognition on the data.