Abstract: A drive system for a robot includes a track including opposed sidewalls, an electrified rail positioned between the sidewalls, a shoe mounted on the robot for contacting the electrified rail providing power to the robot, a drive motor mounted on the robot, a rotating drive member, the drive member engaging the track to drive the robot when the drive motor is actuated, means for coupling the drive member to the drive motor and means for increasing the friction between the drive system and the track at selected locations along the track.
Abstract: A system, method and apparatus for handling and moving a layer of articles, such as cased products. The system and apparatus comprise a hood enclosure having four side panels, and four interconnected corner member. The side walls and corner members interoperate to form an adjustable enclosure to pick the layer of articles. A vacuum generate is utilized to evacuate air from the hood enclosure to assist in lifting the layer of articles. The hood enclosure may utilize an array of vacuum cups to assist in the lifting of articles into the hood enclosure. The method is directed towards utilizing the hood layer end effector to move and hand articles.
Abstract: A substrate transport apparatus including a peripheral wall having an inner surface that defines a substrate transport chamber capable of holding an isolated atmosphere, at least one substantially ring shaped motor having at least one stator module located within the peripheral wall, between the inner surface and an adjacent outer surface of the peripheral wall and at least one rotor suspended substantially without contact within the transport chamber such that a surface of the peripheral wall encompassed by the ring shaped motor is configured for attachment thereto of a predetermined device and at least one substrate transport arm connected to the at least one rotor and having at least one end effector configured to hold at least one substrate.
Type:
Application
Filed:
July 17, 2008
Publication date:
January 22, 2009
Applicant:
Brooks Automation, Inc.
Inventors:
Alexander G. Krupyshev, Christopher Hofmeister
Abstract: Refrigerant freezeout is prevented, and temperature is controlled, by the use of a controlled bypass flow that causes a warming of the lowest temperature refrigerant in a refrigeration system that achieves very low temperatures by using a mixture of refrigerants comprising at least two refrigerants with boiling points that differ by at least 50° C. This control capability enables reliable operation of the very low temperature system.
Type:
Grant
Filed:
February 7, 2006
Date of Patent:
January 20, 2009
Assignee:
Brooks Automation, Inc.
Inventors:
Kevin P. Flynn, Mikhail Boiarski, Oleg Podtcherniaev
Abstract: A detection/cleaning device for reticles employed in the production of electronic components, wherein the detection/cleaning device has a cleaning unit, in which a cleaning chamber is constructed. At least one gas feed for introducing a pressurized fluid cleaning medium opens into the cleaning chamber, and at least one suction means, by means of which the gas can be discharged from the cleaning chamber, leads from the cleaning chamber. The cleaning chamber has at least one first opening for introducing and removing a reticle. A detection unit for detecting contaminants on articles used in semiconductor production is provided. The detection unit has a detection means, into which a reticle can be introduced from one feed side of the detection unit. The first opening of the cleaning chamber and the feed side lie opposite each other. A feeding device is provided for exchanging a reticle between the cleaning unit and the detection unit.
Abstract: Certain exemplary embodiments can comprise a system comprising an electric drive system for a machine. The system can comprise a rectifier adapted to convert AC power from an alternator to DC power. The system can comprise an inverter adapted to receive DC power from the rectifier and provide power to a traction motor and/or auxiliary devices. Certain exemplary embodiments can comprise a system and method for dissipating excess energy from a machine.
Abstract: A substrate processing tool including a frame forming at least one isolatable chamber configured to hold a controlled atmosphere, at least two substrate supports located within each of the at least one isolatable chamber, each of the at least two substrate supports being stacked one above the other and configured to hold a respective substrate and a cooling unit communicably coupled to the at least two substrate supports such that the at least two substrate supports and cooling unit effect simultaneous conductive cooling of each of the respective substrates located on the at least two substrate supports.
Type:
Application
Filed:
May 19, 2008
Publication date:
January 15, 2009
Applicant:
Brooks Automation, Inc.
Inventors:
Christopher Hofmeister, Martin R. Elliot, Alexander Krupyshev, Joseph Hallisey, Joseph A. Kraus, William Fosnight, Craig J. Carbone, Jeffrey C. Blahnik, Ho Yin Fong
Abstract: An electronic module. The electronic module includes a chassis, a plurality of capacitors, and a heat sink. The chassis includes a first end and a second end. The first end is opposite the second end. The chassis also includes a first side, a second side, a third side, and a fourth side. The second side is opposite the first side. The third side is connected to at least one of the first and second sides. The fourth side is connected to at least one of the first and second sides, and is opposite the third side. The chassis is fabricated from a material which stops component debris from passing through the sides of the chassis. The capacitors are positioned within the chassis. The heat sink is positioned between the capacitors and the second end.
Abstract: A sensing mechanism includes a magnetic source, a magnetic flux sensor, a sensor backing on which the magnetic source and flux sensor are mounted, and a ferromagnetic target, where the magnetic source, magnetic flux sensor, and ferromagnetic target are positioned to form a magnetic circuit from the magnetic source to the target, from the target to the sensor, and returning to the magnetic source through the sensor backing.
Type:
Application
Filed:
June 27, 2008
Publication date:
January 15, 2009
Applicant:
Brooks Automation, Inc.
Inventors:
Jairo Moura, Martin Hosek, Jay Krishnasamy, Jeff Paranay
Abstract: A method for controlling at least two series-cell based drives connected in parallel. The method comprises detecting a failed cell in one of the drives, inhibiting operation of the drive with the failed cell, determining a peak output voltage capability of the drive with the failed cell, communicating the peak output voltage capability to a master controller, and limiting a maximum voltage that each drive can apply to a motor. The method also comprises bypassing the failed cell and resuming operation of the drive with the failed cell after the motor voltage falls below the peak output voltage capability of the drive with the failed cell.
Type:
Grant
Filed:
August 14, 2006
Date of Patent:
January 13, 2009
Assignee:
Siemens Energy & Automation, Inc.
Inventors:
Michael R. Amorino, Mukul Rastogi, Anthony C. Schneider
Abstract: A programmable logic controller or programmable automation controller assembly that can be used in harsh environments. A plurality of user-configurable housings are used to accommodate a customer's desired functionality design. A two-board design is featured to enable electronics in the controller assembly. The two-board design includes an active board that houses a majority of electrical components in the controller assembly, and a wiring hub that is used for wiring terminations. A mechanism is provided for a field-removable labeling system that withstands harsh environmental conditions.
Type:
Grant
Filed:
March 22, 2005
Date of Patent:
January 13, 2009
Assignee:
Fairmont Automation Inc.
Inventors:
Gary R. Cane, Brian M. Callahan, James R. Iocca, Steve D. DiBona, Andres Lebaudy
Abstract: A system and method for limiting input voltage to a power delivery system having regeneration capability. According to various embodiments, the system includes a regulator having a multiple input variables and at least one output variable; and an accumulator in communication with the regulator wherein the accumulator presets the output of the regulator to facilitate a quick output as well as accumulates error values related to the multiple input variables and facilitates a change by the regulator to the at least one output variable based upon the accumulated values.
Type:
Application
Filed:
July 3, 2008
Publication date:
January 8, 2009
Applicant:
Siemens Energy & Automation, Inc.
Inventors:
JOHN CHANNING BOUSFIELD, III, XUAN ZHANG, RONALD GAILLOT
Abstract: A traffic signal is provided for controlling vehicular traffic. The traffic signal includes a light source (10) having a light emitting diode (LED) array (D1, D2, D3, D4). A power regulator (14) is associated with the light source and is constructed and arranged to control input current to the light source. A traffic signal controller (16) is remote from the light source and the power regulator. The traffic signal controller is constructed and arranged to provide an input voltage signal to the power regulator, with the input current being based on the input voltage signal.
Abstract: A latching electromagnetically actuable device comprises an electromagnet and an electrical coil. The electromagnet comprises an armature and a core. At least one of the armature and the core is of a magnetically hard material. A housing supports the electromagnet and the coil. Energizing the coil in a first direction magnetizes the magnetically hard material to draw the armature and core together and latch the electromagnet. Energizing the coil is a second direction releases the electromagnet.
Abstract: A method of commutating a motor includes operatively interfacing a stator and actuated component of the motor, arranging at least two winding sets relative to the actuated component, and independently controlling the at least two winding sets so that with the at least two winding sets the actuated component is both driven and centered.
Type:
Application
Filed:
June 27, 2007
Publication date:
January 1, 2009
Applicant:
Brooks Automation, Inc.
Inventors:
Martin Hosek, Jairo Terra Moura, Christopher Hofmeister
Abstract: A method of commutating a motor includes calculating an adjustment electrical angle, and utilizing the adjustment electrical angle in a common set of commutation equations so that the common set of commutation equations is capable of producing both one and two dimensional forces in the motor.
Type:
Application
Filed:
June 27, 2007
Publication date:
January 1, 2009
Applicant:
Brooks Automation, Inc.
Inventors:
Martin Hosek, Jairo Terra Moura, Christopher Hofmeister
Abstract: A substrate processing system including a load port module configured to hold at least one substrate container for storing and transporting substrates, a substrate processing chamber, an isolatable transfer chamber capable of holding an isolated atmosphere therein configured to couple the substrate processing chamber and the load port module, and a substrate transport mounted at least partially within the transfer chamber having a drive section fixed to the transfer chamber and having a SCARA arm configured to support at least one substrate, the SCARA arm being configured to transport the at least one substrate between the at least one substrate container and the processing chamber with but one touch of the at least one substrate, wherein the SCARA arm comprises a first arm link, a second arm link, and at least one end effector serially pivotally coupled to each other, where the first and second arm links have unequal lengths.
Type:
Application
Filed:
May 19, 2008
Publication date:
January 1, 2009
Applicant:
Brooks Automation, Inc.
Inventors:
Christopher Hofmeister, Alexander Krupyshev, Ulysses Gilchrist
Abstract: A thermally aware design automation suite integrates system-level thermal awareness into the design of semiconductor chips. A thermal analysis engine performs fine-grain thermal simulations of the semiconductor chip based on thermal models and boundary conditions for all thermally significant structures in the chip and the adjacent system that impact the temperature of the semiconductor chip. The thermally aware design automation suite uses the simulations of the thermal analysis engine to repair or otherwise modify the thermally significant structures to equalize temperature variations across the chip, impose specified design assertions on selected portions of the chip, and verify overall chip performance and reliability over designated operating ranges and manufacturing variations. The thermally significant structures are introduced or modified via one or more of: change in number, change in location, and change in material properties.
Abstract: A method and system for generating programming code and/or configuration data for programmable controller and the networks on which they operate is disclosed. In one embodiment, programming code is generated on a centralized server having a web-enabled engineering tool. The engineering tool operates on client devices that are in communication with the server over a network, such as the Interntet. Preferably, the engineering tool runs in a browser application (or other network-interfacing-application) on the client device and a user generates the programming code on the server with the aid of the client device. By centralizing the engineering tool, which may contain a configuration editor and a configuration management tool having version management functionality, a new business paradigm for providing engineering tool services to customers having programmable controllers. In addition, new methods and tools for collaborative engineering of programming code are enabled.
Abstract: Refrigerants containing HCFC's are replaced with new blends by using R-236fa and R-125, or R-125 with R-245fa, or R-236ea, or R-134a with R-236fa in place of HCFC's. No hardware or oil composition changes are required to maintain temperatures, pressures and capacity substantially unchanged in a refrigeration system.
Type:
Grant
Filed:
January 7, 2005
Date of Patent:
January 27, 2009
Assignee:
Brooks Automation, Inc.
Inventors:
Oleg Podtchereniaev, Tamirisa Apparao, Kevin P. Flynn, Boris Yudin, Vladimir Mogarichni, Mikhail Boiarski