Patents Assigned to Auxora (Shenzhen) Inc.
  • Patent number: 11668947
    Abstract: Embodiment of present invention provide a wavelength division multiplexing (WDM) module. The WDM module includes a substrate having a first side and a second side opposing the first side, wherein the first side includes a transpassing region coated with an anti-reflective (AR) film and a reflective region coated with a high-reflective (HR) film, and the second side includes multiple ports of optical paths; multiple WDM filters attached to the multiple ports at the second side of the substrate, wherein surfaces of the WDM filters attached to the substrate are coated with WDM films; and at least one reflector attached to the second side of the substrate in a space between the multiple WDM filters, wherein the reflector has a first surface attached to the substrate and a second surface, opposing the first surface, that has a convex shape and coated with a high-reflective (HR) coating.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: June 6, 2023
    Assignee: Auxora (Shenzhen) Inc.
    Inventors: Jinghui Li, Qingming Zhang, Wen Lu, Yangjie Zheng
  • Patent number: 11557028
    Abstract: Embodiments of present invention provide a method for checking integrity of a device selection process. The method includes placing multiple devices in a device tray that has multiple cells arranged in a matrix of M-rows and N-columns; separating the multiple devices into a first group and a second group; causing a machine to memorize locations of at least the first group; removing the second group from the device tray; after the removing, causing the machine to capture an image of devices remaining in the device tray and identify locations of the remaining devices based upon the image; comparing locations so identified with locations of the first group of devices memorized by the machine; and taking a corrective action when a discrepancy is found between the locations identified and locations memorized. An apparatus for performing the above method is also provided.
    Type: Grant
    Filed: August 15, 2021
    Date of Patent: January 17, 2023
    Assignee: Auxora (Shenzhen) Inc.
    Inventors: Jinghui Li, Honggan Zhu, Yaxing Yao
  • Patent number: 11480805
    Abstract: Embodiment of present invention provide a micro-optics module. The module includes a glass body of pentagon shape having five side surfaces including an upper side surface, a left side and a right side surface next to the upper side surface, a lower side surface next to the left side surface, and a 5th side surface next to and between the lower side surface and the right side surface. The glass body is adapted to, upon incident of a first optical signal at the left side surface, cause the first optical signal to propagate toward and exit the glass body at the right side surface and, upon incident of a second optical signal at the right side surface, cause the second optical signal to reflect back at the left side surface; reflect back at the 5th side surface; and finally exit the glass body at the upper side surface.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 25, 2022
    Assignee: Auxora (Shenzhen) Inc
    Inventors: Qingming Zhang, Jinghui Li, Shouli Tang, Xiaodong Huang, Wen Lu, Yaozhong Lin
  • Patent number: 10823926
    Abstract: Embodiment of present invention provide an optical interconnect apparatus. The apparatus includes an optical signal path; a first set of fibers attached to a first end of the optical signal path via a first wavelength-division-multiplexing (WDM) filter; and a second set of fibers attached to a second end of the optical signal path via a second WDM filter, wherein at least the first set of fibers is a ribbon fiber. Embodiment of present invention further provide an interconnected optical system that includes a first optical transport terminal having a first set of optical signal ports and a second optical transport terminal having a second set of optical signal ports, with the two sets of optical signal ports being interconnected by the optical interconnect apparatus.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 3, 2020
    Assignee: Auxora (Shenzhen) Inc.
    Inventors: Jinghui Li, Yuan Liu, Haiquan Zhang, Xiaodong Huang
  • Patent number: 10823925
    Abstract: Embodiment of present invention provide an optical interconnect apparatus. The apparatus includes an optical signal path; a first set of fibers attached to a first end of the optical signal path via a first wavelength-division-multiplexing (WDM) filter; and a second set of fibers attached to a second end of the optical signal path via a second WDM filter, wherein at least the first set of fibers is a ribbon fiber. Embodiment of present invention further provide an interconnected optical system that includes a first optical transport terminal having a first set of optical signal ports and a second optical transport terminal having a second set of optical signal ports, with the two sets of optical signal ports being interconnected by the optical interconnect apparatus.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 3, 2020
    Assignee: Auxora (Shenzhen) Inc
    Inventors: Jinghui Li, Yuan Liu, Haiquan Zhang, Xiaodong Huang
  • Patent number: 10564359
    Abstract: Embodiment of present invention provide an optical interconnect apparatus. The apparatus includes an optical signal path; a first set of pigtail fibers attached to a first end of the optical signal path via a first wavelength-division-multiplexing (WDM) filter; and a second set of pigtail fibers attached to a second end of the optical signal path via a second WDM filter. Embodiment of present invention further provide an interconnected optical system that includes a first optical transport terminal having a first set of optical signal ports and a second optical transport terminal having a second set of optical signal ports, with the two sets of optical signal ports being interconnected by the optical interconnect apparatus.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: February 18, 2020
    Assignee: Auxora (Shenzhen) Inc.
    Inventors: Jinghui Li, Yuan Liu, Haiquan Zhang, Xiaodong Huang
  • Patent number: 10527810
    Abstract: Embodiment of present invention provide an optical interconnect apparatus. The apparatus includes an optical signal path; a first set of fibers attached to a first end of the optical signal path via a first wavelength-division-multiplexing (WDM) filter; and a second set of fibers attached to a second end of the optical signal path via a second WDM filter, wherein at least the first set of fibers is a ribbon fiber. Embodiment of present invention further provide an interconnected optical system that includes a first optical transport terminal having a first set of optical signal ports and a second optical transport terminal having a second set of optical signal ports, with the two sets of optical signal ports being interconnected by the optical interconnect apparatus.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: January 7, 2020
    Assignee: Auxora (Shenzhen) Inc.
    Inventors: Jinghui Li, Yuan Liu, Haiquan Zhang, Xiaodong Huang
  • Patent number: 10514507
    Abstract: Embodiments of present invention provide an ultra-small-pitch optical filter assembly. The assembly includes a fiber collimator being able to receive an optical signal; a WDM filter module being able to de-multiplex the optical signal from the fiber collimator into multiple optical beams; and an optical lens assembly being able to receive the multiple optical beams from the WDM filter module and to reduce a physical spacing among the multiple optical beams from a first pitch D to a second pitch d, wherein D/d A method of fabricating the ultra-small-pitch optical filter assembly is also provided. A method of producing a set of optical beams with ultra-small-pitch of spacing is provided as well.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: December 24, 2019
    Assignee: Auxora (Shenzhen) Inc.
    Inventors: Qingming Zhang, Xiaodong Huang, Yuan Liu, Jinghui Li