Patents Assigned to Avalon Holographics Inc.
  • Patent number: 10924727
    Abstract: A simulator for light field displays. A high-performance simulator that can operate in real-time, allowing for VR-based evaluation of display designs. These capabilities allow for rapid exploration of display parameters (e.g. angular and hogel resolution, field of view, etc.), the visualization of how the angular spread of the rays that can affect quality and the evaluation of artifacts from light field processing. Additionally, the high-throughput nature of the simulation makes it amenable for use in the evaluation of light processing procedures such as those involved in light field rendering and compression contexts. The speed and ease with which one can explore light field display parameters makes this simulator the ideal tool for light field content design and evaluation.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: February 16, 2021
    Assignee: Avalon Holographics Inc.
    Inventors: Matthew Hamilton, Matthew Troke, Chuck Rumbolt, Robert Lockyer, Donovan Benoit, Thomas Butyn
  • Patent number: 10911735
    Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using an effective resolution function to determine a suitable sampling rate and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: February 2, 2021
    Assignee: Avalon Holographics Inc.
    Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
  • Patent number: 10651424
    Abstract: Control of the emission characteristics of a light source in a light field display poses a significant benefit in the resulting 3D display quality for current and future technologies. A design system for microcavity OLEDs of any wavelength is detailed, which combines theoretical background with FDTD optimizations, permitting microcavity design of any OLED configuration. The resulting output profiles for microcavity OLEDs designed and fabricated with this method are compared to standard OLEDs and provide a reduction in spectral bandwidth, and a decrease in angular output.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: May 12, 2020
    Assignee: Avalon Holographics Inc.
    Inventors: Jordan Peckham, Jennifer Campbell, Jiaqi Cheng
  • Patent number: 10536688
    Abstract: The present disclosure relates to a directional pixel for a high-angular resolution, wide field of view, multiple view display. The design teaches a directional pixel comprising a substrate, one or more pixel driving circuits, one or more nano- or micro-scale subpixels, and one or more directional optical guiding surfaces, wherein each of said one or more subpixels is comprised of a light emitting device emitting a light beam and an optical microcavity housing said light emitting device. The optical microcavity is comprised of a plurality of reflective surfaces to specifically manipulate and tune said light beam, wherein one or more of said reflective surfaces is a light propagating reflective surface which propagates said light beam out of said microcavity, and said light propagating reflective surface is connected to said one or more directional optical guiding surfaces to direct said light beam at a specific angle.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: January 14, 2020
    Assignee: Avalon Holographics Inc.
    Inventors: Wally Haas, Jennifer Campbell-Correa, Matthew Hamilton, Stephen Hill, Jordan Peckham, Chuck Rumbolt
  • Patent number: 10432944
    Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the plane of the display increases. Data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: October 1, 2019
    Assignee: Avalon Holographics Inc.
    Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer
  • Publication number: 20190215510
    Abstract: The present disclosure relates to a directional pixel for a high-angular resolution, wide field of view, multiple view display. The design teaches a directional pixel comprising a substrate, one or more pixel driving circuits, one or more nano- or micro-scale subpixels, and one or more directional optical guiding surfaces, wherein each of said one or more subpixels is comprised of a light emitting device emitting a light beam and an optical microcavity housing said light emitting device. The optical microcavity is comprised of a plurality of reflective surfaces to specifically manipulate and tune said light beam, wherein one or more of said reflective surfaces is a light propagating reflective surface which propagates said light beam out of said microcavity, and said light propagating reflective surface is connected to said one or more directional optical guiding surfaces to direct said light beam at a specific angle.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Applicant: Avalon Holographics Inc.
    Inventors: Wally Haas, Jennifer Campbell-Correa, Matthew Hamilton, Stephen Hill, Jordan Peckham, Chuck Rumbolt
  • Patent number: 10340480
    Abstract: Control of the emission characteristics of a light source in a light field display poses a significant benefit in the resulting 3D display quality for current and future technologies. A design system for microcavity OLEDs of any wavelength is detailed, which combines theoretical background with FDTD optimizations, permitting microcavity design of any OLED configuration. The resulting output profiles for microcavity OLEDs designed and fabricated with this method are compared to standard OLEDs and provide a reduction in spectral bandwidth, and a decrease in angular output.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: July 2, 2019
    Assignee: Avalon Holographics Inc.
    Inventor: Jordan Peckham
  • Patent number: 10244230
    Abstract: The present disclosure relates to a directional pixel for a high-angular resolution, wide field of view, multiple view display. The design teaches a directional pixel comprising a substrate, one or more pixel driving circuits, one or more nano- or micro-scale subpixels, and one or more directional optical guiding surfaces, wherein each of said one or more subpixels is comprised of a light emitting device emitting a light beam and an optical microcavity housing said light emitting device. The optical microcavity is comprised of a plurality of reflective surfaces to specifically manipulate and tune said light beam, wherein one or more of said reflective surfaces is a light propagating reflective surface which propagates said light beam out of said microcavity, and said light propagating reflective surface is connected to said one or more directional optical guiding surfaces to direct said light beam at a specific angle.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: March 26, 2019
    Assignee: Avalon Holographics Inc.
    Inventors: Wally Haas, Jennifer Campbell-Correa, Matthew Hamilton, Stephen Hill, Jordan Peckham, Chuck Rumbolt