Patents Assigned to Avanpore LLC
-
Patent number: 11878284Abstract: A process for the efficient transfer of molecules between phases employing mesoporous poly (aryl ether ketone) hollow fiber membranes is provided. The method addresses the controlled transfer of reactants into and removal of reaction products from a reaction media and the removal and separation of target molecules from process streams by membrane-assisted liquid-liquid extraction. A number of possible modes of liquid-liquid extraction are possible according to the invention by utilizing porous poly (aryl ether ketone) hollow fiber membranes of Janus-like structure that exhibit a combination of hydrophilic and hydrophobic surface characteristics. The method of the present invention can address the continuous manufacture of chemicals in membrane reactors and is useful for a broad range of separation applications, including separation and recovery of active pharmaceutical ingredients.Type: GrantFiled: March 21, 2023Date of Patent: January 23, 2024Assignee: Avanpore LLCInventor: Benjamin Bikson
-
Patent number: 11786871Abstract: Disclosed is the preparation of composite membranes formed by a tailored selective chemical modification of an ultra-thin nanoporous surface layer of a semi-crystalline mesoporous poly (aryl ether ketone) membrane with graded density pore structure. The composite separation layer is synthesized in situ on the poly (aryl ether ketone) substrate surface and is covalently linked to the surface of the semi-crystalline mesoporous poly (aryl ether ketone) membrane. Hollow fiber configuration is the preferred embodiment of forming the functionalized the poly (aryl ether ketone) membranes. Composite poly (aryl ether ketone) membranes of the present invention are particularly useful for a broad range of fluid separation applications, including organic solvent ultrafiltration and nanofiltration to separate and recover active pharmaceutical ingredients.Type: GrantFiled: March 20, 2023Date of Patent: October 17, 2023Assignee: Avanpore LLCInventor: Benjamin Bikson
-
Publication number: 20230226500Abstract: Disclosed is the preparation of composite membranes formed by a tailored selective chemical modification of an ultra-thin nanoporous surface layer of a semi-crystalline mesoporous poly (aryl ether ketone) membrane with graded density pore structure. The composite separation layer is synthesized in situ on the poly (aryl ether ketone) substrate surface and is covalently linked to the surface of the semi-crystalline mesoporous poly (aryl ether ketone) membrane. Hollow fiber configuration is the preferred embodiment of forming the functionalized the poly (aryl ether ketone) membranes. Composite poly (aryl ether ketone) membranes of the present invention are particularly useful for a broad range of fluid separation applications, including organic solvent ultrafiltration and nanofiltration to separate and recover active pharmaceutical ingredients.Type: ApplicationFiled: March 20, 2023Publication date: July 20, 2023Applicant: Avanpore LLCInventor: Benjamin Bikson
-
Publication number: 20230219062Abstract: A process for the efficient transfer of molecules between phases employing mesoporous poly (aryl ether ketone) hollow fiber membranes is provided. The method addresses the controlled transfer of reactants into and removal of reaction products from a reaction media and the removal and separation of target molecules from process streams by membrane-assisted liquid-liquid extraction. A number of possible modes of liquid-liquid extraction are possible according to the invention by utilizing porous poly (aryl ether ketone) hollow fiber membranes of Janus-like structure that exhibit a combination of hydrophilic and hydrophobic surface characteristics. The method of the present invention can address the continuous manufacture of chemicals in membrane reactors and is useful for a broad range of separation applications, including separation and recovery of active pharmaceutical ingredients.Type: ApplicationFiled: March 21, 2023Publication date: July 13, 2023Applicant: Avanpore LLCInventor: Benjamin Bikson
-
Patent number: 11673099Abstract: Disclosed is the preparation of composite membranes formed by a tailored selective chemical modification of an ultra-thin nanoporous surface layer of a semi-crystalline mesoporous poly (aryl ether ketone) membrane with graded density pore structure. The composite separation layer is synthesized in situ on the poly (aryl ether ketone) substrate surface and is covalently linked to the surface of the semi-crystalline mesoporous poly (aryl ether ketone) membrane. Hollow fiber configuration is the preferred embodiment of forming the functionalized the poly (aryl ether ketone) membranes. Composite poly (aryl ether ketone) membranes of the present invention are particularly useful for a broad range of fluid separation applications, including organic solvent ultrafiltration and nanofiltration to separate and recover active pharmaceutical ingredients.Type: GrantFiled: May 5, 2022Date of Patent: June 13, 2023Assignee: Avanpore LLCInventor: Benjamin Bikson
-
Patent number: 11629239Abstract: Mesoporous poly (aryl ether ketone) articles are formed from blends of poly (aryl ether ketones) with pore forming additives by melt processing, and can be in the form of a monofilament, disc, film, microcapillary or other complex shapes. The method of formation provides for preparation of poly (aryl ether ketone) articles with high degree of surface area and uniform nanometer pore size. The preferred poly (aryl ether ketone)s are poly (ether ketone) and poly (ether ether ketone). The mesoporous articles formed by the method of the present invention are useful for a broad range of applications, including molecular separations and organic solvent filtration.Type: GrantFiled: October 14, 2022Date of Patent: April 18, 2023Assignee: Avanpore LLCInventor: Benjamin Bikson
-
Publication number: 20230060660Abstract: A process for the efficient transfer of molecules between phases employing mesoporous poly (aryl ether ketone) hollow fiber membranes is provided. The method addresses the controlled transfer of reactants into and removal of reaction products from a reaction media and the removal and separation of target molecules from process streams by membrane-assisted liquid-liquid extraction. A number of possible modes of liquid-liquid extraction are possible according to the invention by utilizing porous poly (aryl ether ketone) hollow fiber membranes of Janus-like structure that exhibit a combination of hydrophilic and hydrophobic surface characteristics. The method of the present invention can address the continuous manufacture of chemicals in membrane reactors and is useful for a broad range of separation applications, including separation and recovery of active pharmaceutical ingredients.Type: ApplicationFiled: September 30, 2022Publication date: March 2, 2023Applicant: Avanpore LLCInventor: Benjamin Bikson
-
Publication number: 20230059166Abstract: Disclosed is the preparation of composite membranes formed by a tailored selective chemical modification of an ultra-thin nanoporous surface layer of a semi-crystalline mesoporous poly (aryl ether ketone) membrane with graded density pore structure. The composite separation layer is synthesized in situ on the poly (aryl ether ketone) substrate surface and is covalently linked to the surface of the semi-crystalline mesoporous poly (aryl ether ketone) membrane. Hollow fiber configuration is the preferred embodiment of forming the functionalized the poly (aryl ether ketone) membranes. Composite poly (aryl ether ketone) membranes of the present invention are particularly useful for a broad range of fluid separation applications, including organic solvent ultrafiltration and nanofiltration to separate and recover active pharmaceutical ingredients.Type: ApplicationFiled: May 5, 2022Publication date: February 23, 2023Applicant: Avanpore LLCInventor: Benjamin Bikson
-
Publication number: 20230050009Abstract: Mesoporous poly (aryl ether ketone) articles are formed from blends of poly (aryl ether ketones) with pore forming additives by melt processing, and can be in the form of a monofilament, disc, film, microcapillary or other complex shapes. The method of formation provides for preparation of poly (aryl ether ketone) articles with high degree of surface area and uniform nanometer pore size. The preferred poly (aryl ether ketone)s are poly (ether ketone) and poly (ether ether ketone). The mesoporous articles formed by the method of the present invention are useful for a broad range of applications, including molecular separations and organic solvent filtration.Type: ApplicationFiled: October 14, 2022Publication date: February 16, 2023Applicant: Avanpore LLCInventor: Benjamin Bikson
-
Patent number: 11511238Abstract: Disclosed is the preparation of composite fluid separation membranes based on poly (aryl ether ketone) (PAEK) polymers with the separation layer formed by a layer-by-layer reticular synthesis. The porous PAEK substrate is semicrystalline, exhibits a mesoporous surface structure, and is surface functionalized. The separation layer formed by the hierarchical layer-by-layer process is in the form of a covalent organic network integrally linked via covalent bonds to the functional groups of the substrate. The composite separation layer may be synthesized in situ in a preformed separation device on the surface of the PAEK substrate. Device configurations include flat sheet, spiral wound, monolith, and hollow fiber configurations with the hollow fiber configuration being preferred. Hollow fibers are formed from PAEK polymers with poly (ether ether ketone) and poly (ether ketone) particularly preferred. Composite PAEK membranes of the present invention are useful for a broad range of fluid separation applications.Type: GrantFiled: July 12, 2022Date of Patent: November 29, 2022Assignee: Avanpore LLCInventor: Benjamin Bikson
-
Patent number: 11505671Abstract: Mesoporous poly (aryl ether ketone) articles are formed from blends of poly (aryl ether ketones) with pore forming additives by melt processing, and can be in the form of a monofilament, disc, film, microcapillary or other complex shapes. The method of formation provides for preparation of poly (aryl ether ketone) articles with high degree of surface area and uniform nanometer pore size. The preferred poly (aryl ether ketone)s are poly (ether ketone) and poly (ether ether ketone). The mesoporous articles formed by the method of the present invention are useful for a broad range of applications, including molecular separations and organic solvent filtration.Type: GrantFiled: May 10, 2022Date of Patent: November 22, 2022Assignee: Avanpore LLCInventor: Benjamin Bikson
-
Patent number: 11491464Abstract: A process for the efficient transfer of molecules between phases employing mesoporous poly (aryl ether ketone) hollow fiber membranes is provided. The method addresses the controlled transfer of reactants into and removal of reaction products from a reaction media and the removal and separation of target molecules from process streams by membrane-assisted liquid-liquid extraction. A number of possible modes of liquid-liquid extraction are possible according to the invention by utilizing porous poly (aryl ether ketone) hollow fiber membranes of Janus-like structure that exhibit a combination of hydrophilic and hydrophobic surface characteristics. The method of the present invention can address the continuous manufacture of chemicals in membrane reactors and is useful for a broad range of separation applications, including separation and recovery of active pharmaceutical ingredients.Type: GrantFiled: June 9, 2022Date of Patent: November 8, 2022Assignee: Avanpore LLCInventor: Benjamin Bikson