Patents Assigned to Avanstrate Inc.
  • Patent number: 9096459
    Abstract: A flat panel display glass substrate includes a glass comprising, in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, and 3-25% RO (the total amount of MgO, CaO, SrO, and BaO). The contents in mol % of SiO2, Al2O3, and B2O3 satisfy a relationship (SiO2+Al2O3)/(B2O3)=7.5-17. The strain point of the glass is 665° C. or more. The devitrification temperature of the glass is 1250° C. or less. The substrate has a heat shrinkage rate of 75 ppm or less. The rate of heat shrinkage is calculated from the amount of shrinkage of the substrate measured after a heat treatment which is performed at a rising and falling temperature rate of 10° C./min and at 550° C. for 2 hours by the rate of heat shrinkage (ppm)={the amount of shrinkage of the substrate after the heat treatment/the length of the substrate before the heat treatment}×106.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 4, 2015
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Patent number: 9038416
    Abstract: A glass-substrate manufacturing method which includes a forming step and a cooling step. In the forming step, a molten glass is formed into a sheet glass by a down-draw process. In the cooling step, the sheet glass is cooled. The cooling step includes first, second and third coating steps as defined herein.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: May 26, 2015
    Assignee: AvanStrate Inc.
    Inventor: Hiroyuki Kariya
  • Patent number: 9029280
    Abstract: A substrate for p-Si TFT flat panel displays made of a glass having a high low-temperature-viscosity characteristic temperature and manufactured while avoiding erosion/wear of a melting tank during melting through direct electrical heating. The glass substrate comprises 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-20 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-0.8 mass % of R2O, wherein R2O is total amount of Li2O, Na2O, and K2O, and 0-0.3 mass % of Sb2O3, and substantially does not comprise As2O3, wherein the mass ratio CaO/RO is equal to or greater than 0.65, the mass ratio (SiO2+Al2O3)/B2O3 is in a range of 7-30, and the mass ratio (SiO2+Al2O3)/RO is equal to or greater than 5. A related method involves melting glass raw materials blended to provide the glass composition; a forming step of forming the molten glass into a flat-plate glass; and an annealing step of annealing the flat-plate glass.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 12, 2015
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Patent number: 8938992
    Abstract: A method of manufacturing a glass sheet according to the present invention comprises the steps of creating split flows of molten glass in a forming body 10 and causing the molten glass to flow down, subsequently merging the flows at a merging point to form a glass sheet G and causing the glass sheet to flow downward in the vertical direction. In this method of manufacturing a glass sheet, a partition member 20 is disposed facing the glass sheet G in the vicinity of a location below the forming body 10, and a facing surface of the partition member 20 is shaped so as to correspond to a sheet thickness variation of the glass sheet G, so that a gap between the glass sheet G and the partition member 20 is substantially uniform.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 27, 2015
    Assignee: AvanStrate Inc.
    Inventors: Hiroyuki Kariya, Takayuki Shimizu, Mikio Kimori
  • Patent number: 8932969
    Abstract: Provided are: a glass substrate for p-Si TFT flat panel displays that is composed of a glass having high characteristic temperatures in the low-temperature viscosity range, typified by the strain point and glass transition point, having a small heat shrinkage rate, and being capable of avoiding the occurrence of the problem regarding the erosion/wear of a melting tank at the time of melting through direct electrical heating; and a method for manufacturing same. The present glass substrate is composed of a glass comprising 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-25 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-1 mass % of Fe2O3, and 0-0.3 mass % of Sb2O3, and substantially not comprising As2O3, the glass having a mass ratio (SiO2+Al2O3)/B2O3 in a range of 7-30 and a mass ratio (SiO2+Al2O3)/RO equal to or greater than 6.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 13, 2015
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Publication number: 20140370241
    Abstract: A method for manufacturing a glass substrate for a display includes a step of producing a glass substrate and a step of performing a surface treatment on one glass surface of major surfaces of the glass substrate to form surface unevenness. The surface treatment is performed such that protruded portions having a height of 1 nm or more from the surface roughness central plane of the surface unevenness are dispersedly provided on the glass surface after the surface treatment and the area ratio of the protruded portions with respect to the area of the glass surface is 0.5-10%. Using this glass substrate, semiconductor elements are formed on a major surface of the glass substrate opposite to the glass surface. Accordingly, a display panel is produced.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Applicant: AvanStrate Inc.
    Inventor: Young Tae PARK
  • Patent number: 8895461
    Abstract: Provided are: a glass substrate for p-Si TFT flat panel displays that is composed of a glass having high characteristic temperatures in the low-temperature viscosity range, typified by the strain point and glass transition point, having a small heat shrinkage rate, and being capable of avoiding the occurrence of the problem regarding the erosion/wear of a melting tank at the time of melting through direct electrical heating; and a method for manufacturing same. The present glass substrate is composed of a glass comprising 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-25 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-1 mass % of Fe2O3, and 0-0.3 mass % of Sb2O3, and substantially not comprising As2O3, the glass having a mass ratio (SiO2+Al2O3)/B2O3 in a range of 7-30 and a mass ratio (SiO2+Al2O3)/RO equal to or greater than 6.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 25, 2014
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Publication number: 20140309098
    Abstract: A flat panel display glass substrate includes a glass comprising, in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, and 3-25% RO (the total amount of MgO, CaO, SrO, and BaO). The contents in mol % of SiO2, Al2O3, and B2O3 satisfy a relationship (SiO2+Al2O3)/(B2O3)=7.5-17. The strain point of the glass is 665° C. or more. The devitrification temperature of the glass is 1250° C. or less. The substrate has a heat shrinkage rate of 75 ppm or less. The rate of heat shrinkage is calculated from the amount of shrinkage of the substrate measured after a heat treatment which is performed at a rising and falling temperature rate of 10° C./min and at 550° C. for 2 hours by the rate of heat shrinkage (ppm)={the amount of shrinkage of the substrate after the heat treatment/the length of the substrate before the heat treatment}×106.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Applicant: AvanStrate Inc.
    Inventors: Akihiro KOYAMA, Satoshi AMI, Manabu ICHIKAWA
  • Patent number: 8853113
    Abstract: A flat panel display glass substrate according to the present invention includes a glass comprising, as expressed in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, 3-25% RO (the total amount of MgO, CaO, SrO, and BaO), and substantially no As2O3 and Sb2O3. The devitrification temperature of the glass is 1250° C. or less. The glass substrate has a heat shrinkage rate of 75 ppm or less. The heat shrinkage rate is calculated from the amount of shrinkage of the glass substrate measured after a heat treatment which is performed at a temperature rising and falling rate of 10° C./min and at 550° C. for 2 hours by the heat shrinkage rate (ppm)={the amount of shrinkage of the glass substrate after the heat treatment/the length of the glass substrate before the heat treatment}×106.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: October 7, 2014
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Patent number: 8840997
    Abstract: A cover glass having a compressive-stress layer on the principal surfaces thereof, and having a glass composition containing 50% to 70% by mole of SiO2, 3% to 20% by mole of Al2O3, 5% to 25% by mole of Na2O, more than 0% by mole and less than or equal to 2.5% by mole of Li2O, 0% to 5.5% by mole of K2O, and 0% to less than 3% by mole of B2O3. Also disclosed is a method for producing a cover glass which includes: (i) preparing molten glass by melting a glass raw material; (ii) forming the prepared molten glass into a plate-like shape by a down-draw process and thereby obtaining a glass substrate; and (iii) forming a compressive-stress layer on the surface of the glass substrate.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: September 23, 2014
    Assignees: AvanStrate Inc., Hoya Corporation
    Inventors: Akihiro Koyama, Satoshi Ami, Kazuaki Hashimoto, Tetsuo Takano
  • Patent number: 8826694
    Abstract: A method of manufacturing a glass sheet includes creating split flows of molten glass in a forming body (10) and causing the molten glass to flow down, subsequently merging the flows at a merging point to form a glass sheet G and causing the glass sheet to flow downward in the vertical direction. A plurality of chambers (42b, 42c, . . . ) separated by heat-insulating plates (40a, 40b, . . . ) in the direction of movement of the glass sheet G are provided. A heater (60a, 60b, . . . ) is provided for each of the chambers (42b, 42c, . . . ) so that the temperature decreases in the direction of movement. The heat-insulating plates (40a, 40b, . . . ) are disposed facing the glass sheet G, and facing surfaces of the heat-insulating plates (40a, 40b, . . . ) are shaped so as to correspond to a sheet thickness variation of the glass sheet G.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 9, 2014
    Assignee: AvanStrate Inc.
    Inventors: Hiroyuki Kariya, Nobuhiro Maeda
  • Publication number: 20140249019
    Abstract: A glass substrate for p-Si TFT flat panel displays that is composed of a glass comprising 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-25 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-1 mass % of Fe2O3, and 0-0.3 mass % of Sb2O3, and substantially not comprising As2O3, the glass having a mass ratio (SiO2+Al2O3)/B2O3 in a range of 7-30 and a mass ratio (SiO2+Al2O3)/RO equal to or greater than 6. A method for manufacturing a glass substrate involves: a melting step of obtaining a molten glass by melting, by employing at least direct electrical heating, glass raw materials blended so as to provide the aforementioned glass composition; a forming step of forming the molten glass into a flat-plate glass; and an annealing step of annealing the flat-plate glass.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: AvanStrate Inc.
    Inventors: Akihiro KOYAMA, Satoshi AMI, Manabu ICHIKAWA
  • Publication number: 20140249018
    Abstract: A flat panel display glass substrate according to the present invention includes a glass comprising, as expressed in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, 3-25% RO (the total amount of MgO, CaO, SrO, and BaO), and substantially no As2O3, and Sb2O3. The devitrification temperature of the glass is 1250° C. or less. The glass substrate has a heat shrinkage rate of 75 ppm or less. The heat shrinkage rate is calculated from the amount of shrinkage of the glass substrate measured after a heat treatment which is performed at a temperature rising and falling rate of 10° C./min and at 550° C. for 2 hours by the heat shrinkage rate (ppm)={the amount of shrinkage of the glass substrate after the heat treatment/the length of the glass substrate before the heat treatment}×106.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: AVANSTRATE INC.
    Inventors: Akihiro KOYAMA, Satoshi AMI, Manabu ICHIKAWA
  • Patent number: 8741794
    Abstract: A glass substrate for a display, which is formed of a glass having a light weight and having high refinability with decreasing environmental burdens, the glass comprising, by mass %, 50 to 70% of SiO2, 5 to 18% of B2O3, 10 to 25% of Al2O3, 0 to 10% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 10% of BaO, 5 to 20% of RO (in which R is at least one member selected from the group consisting of Mg, Ca, Sr and Ba), and over 0.20% but not more than 2.0% of R?2O (in which R? is at least one member selected from the group consisting of Li, Na and K), and containing, by mass %, 0.05 to 1.5% of oxide of metal that changes in valence number in a molten glass, and substantially containing none of As2O3, Sb2O3 and PbO.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: June 3, 2014
    Assignee: Avanstrate Inc.
    Inventors: Junji Kurachi, Akihiro Koyama, Yoichi Hachitani
  • Patent number: 8726696
    Abstract: A stirring device 100 comprises a chamber 101, and a stirrer 102 for stirring molten glass 7 in the chamber 101. The stirrer 102 has a shaft 105 as a rotation axis, and blades 106a-106e disposed in a plurality of tiers on a side wall of the shaft 105. The blades 106a-106e have support plates 108 and ancillary plates 109. The ancillary plates 109 create, in the molten glass 7, a flow in the radial direction of the shaft 105.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 20, 2014
    Assignee: AvanStrate Inc.
    Inventors: Kohei Yamamoto, Hitoshi Gekko
  • Publication number: 20140031192
    Abstract: A glass substrate for a display, which is formed of a glass having a light weight and having high refinability with decreasing environmental burdens, the glass comprising, by mass %, 50 to 70% of SiO2, 5 to 18% of B2O3, 10 to 25% of Al2O3, 0 to 10% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 10% of BaO, 5 to 20% of RO (in which R is at least one member selected from the group consisting of Mg, Ca, Sr and Ba), and over 0.20% but not more than 2.0% of R?2O (in which R? is at least one member selected from the group consisting of Li, Na and K), and containing, by mass %, 0.05 to 1.5% of oxide of metal that changes in valence number in a molten glass, and substantially containing none of As2O3, Sb2O3 and PbO.
    Type: Application
    Filed: January 18, 2013
    Publication date: January 30, 2014
    Applicant: AVANSTRATE, INC.
    Inventors: Junji Kurachi, Akihiro Koyama, Yoichi Hachitani
  • Publication number: 20140013805
    Abstract: The method for producing a glass sheet by down-drawing includes an air pressure controlling step of controlling the air pressure of a furnace outside space formed between a furnace and a covering part that covers the furnace, the furnace including a forming furnace and a lehr, a melting step of melting glass raw materials to form molten glass, a supplying step of supplying the molten glass to a forming cell disposed inside the forming furnace, a forming step of forming a glass sheet by allowing the molten glass to flow down the forming cell, an annealing step of cooling the glass sheet while allowing the glass sheet to flow in one direction in the lehr, and a cutting step of cutting the glass sheet that has been cooled. In the air pressure controlling step, air pressure is controlled such that the air pressure is higher, inside the furnace outside space, at a position more toward the upstream side of the flow direction of the glass sheet.
    Type: Application
    Filed: March 27, 2012
    Publication date: January 16, 2014
    Applicants: AVANSTRATE KOREA INC., AVANSTRATE INC.
    Inventors: Hiroyuki Kariya, Kimihiko Nakashima
  • Patent number: 8616025
    Abstract: A method of manufacturing glass comprises a stirring step in which molten glass MG is stirred. The stirring step comprises a first stirring step and a second stirring step. In the first stirring step, the molten glass MG is stirred while being directed upward from below in a first stirred tank 100a. In the second stirring step, the molten glass MG stirred in the first stirring step is stirred while being directed downward from above in a second stirred tank 100b. The first stirred tank 100a has a first discharge pipe 110a capable of discharging the molten glass MG from the bottom of a first chamber 101a. The second stirred tank 100b has a second discharge pipe 110b capable of discharging the molten glass MG from the liquid level LL of the molten glass MG in a second chamber 101b.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: December 31, 2013
    Assignee: AvanStrate Inc.
    Inventors: Kohei Yamamoto, Hitoshi Gekko
  • Publication number: 20130345041
    Abstract: Provided is a glass composition suitable for a glass substrate for a flat panel display such as a liquid crystal display. This glass composition has high thermal stability, and is substantially free of BaO but has a low devitrification temperature. It is suitable for the production of a glass substrate by a downdraw process. This glass composition contains, in terms of mass %: 54 to 62% of SiO2; 4 to 11% of B2O3; 15 to 20% of Al2O3; 2 to 5% of MgO; 0 to 7% of CaO; 0 to 13.5% of SrO; 0 to 1% of K2O; 0 to 1% of SnO2; and 0 to 0.2% of Fe2O3, and is substantially free of BaO. In this glass composition, the total content of alkaline earth metal oxides (MgO+CaO+SrO) is 10 to 18.5 mass %. The devitrification temperature of the glass composition is 1200° C. or lower.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicant: AvanStrate Inc.
    Inventors: Akihiro KOYAMA, Mikiko HASHIMOTO
  • Publication number: 20130306995
    Abstract: A method for manufacturing a glass substrate for a display includes a step of producing a glass substrate and a step of performing a surface treatment on one glass surface of major surfaces of the glass substrate to form surface unevenness. The surface treatment is performed such that protruded portions having a height of 1 nm or more from the surface roughness central plane of the surface unevenness are dispersedly provided on the glass surface after the surface treatment and the area ratio of the protruded portions with respect to the area of the glass surface is 0.5-10%. Using this glass substrate, semiconductor elements are formed on a major surface of the glass substrate opposite to the glass surface. Accordingly, a display panel is produced.
    Type: Application
    Filed: April 26, 2013
    Publication date: November 21, 2013
    Applicant: AvanStrate Inc.
    Inventor: AvanStrate Inc.