Abstract: Using DSL modems as data collectors, the modems processes the data to, for example, allow easier interpretation of the line characteristics. In particular, the modems postprocess the data including calibration, filter compensation, determination of the SNR medley from the bits and gains tables and rate conversion. The interpretation process uses the postprocessed data and determines loop characterization, interferer detection, a data reduction estimation and a data rate estimation. The outputs of these determinations least allow for the characterization of the line conditions between the two modems.
Type:
Grant
Filed:
October 10, 2013
Date of Patent:
June 3, 2014
Assignee:
Aware, Inc.
Inventors:
Murat Belge, Michael A. Tzannes, Halil Padir
Abstract: A modem or associated computing or testing device is configured to detect the presence of one or more faults that affect DSL communications, and upon their detection, generate, for example, an indication, communication or message that recommends corrective action. In this context, a fault is generally caused by one or more unfiltered devices, impulsive noises, malfunctioning modems, or other factor that does not affect measured attenuation or measured noise, but does affect the signal-to-noise ratio (SNR) of the link. In addition to being able to generate a message guiding a user through corrective action, the system can estimate the rate impact of the detected fault.
Abstract: A technique for controlling the quality of one or more compressed images. The technique allows, for example, the selection of a target quality metric(s) and the compression of the image(s) such the compressed image(s) meets the metric(s). Alternatively, a target quality metric can be specified, and the image(s) compressed using parameters estimated to achieve the target quality. Optionally, the quality metric can also be made available to, for example, a user on an image processing system. The quality metrics can be, for example, for one or more layers, one or more images and/or one or more image sequences.
Abstract: There are several exemplary ways to more efficiently communicate an out-of-domain seed to a receiver—in a first technique, the seed can be indicated in the header portion or data portion of a packet. For example, the header portion of the packet could contain one or more bit fields that indicate the value of the LFSR seed used for the preamble portion of the packet. The receiver would learn the out-of-domain seed after receiving a first out-of-domain packet and decoding the header portion of that packet. After learning the out-of-domain seed, the receiver could send a packet indicating the value of the out-of-domain seed to the local master. The local master could then transmit the value of the out-of-domain seed in the header portion or data portion of a local MAP frame.
Type:
Grant
Filed:
July 22, 2010
Date of Patent:
May 6, 2014
Assignee:
Aware, Inc.
Inventors:
Marcos Tzannes, Joon Bae Kim, Stuart Sandberg
Abstract: Through the use of a least squares minimization concept, the loop length, the number of bridged taps and length of the bridged taps on a transmission line can be determined from readily available modem data. In particular, the loop length, the number of bridge taps and the length of bridged taps can be estimated by comparing a measured frequency domain channel impulse response of the transmission line to a model of a loop that is comprised of multiple sections and multiple bridge taps.
Abstract: A modem or associated computing or testing device is configured to detect the presence of one or more faults that affect DSL communications, and upon their detection, generate, for example, an indication, communication or message that recommends corrective action. In this context, a fault is generally caused by one or more unfiltered devices, impulsive noises, malfunctioning modems, or other factor that does not affect measured attenuation or measured noise, but does affect the signal-to-noise ratio (SNR) of the link. In addition to being able to generate a message guiding a user through corrective action, the system can estimate the rate impact of the detected fault.
Abstract: A diagnostic tool is adapted to include the capability of initiating one or more diagnostic tests, collecting the raw data from the diagnostic test(s) and transporting the raw diagnostic data to an OSS. The OSS interprets the raw diagnostic data and stores the results in a database. The stored results can be searched, sorted, manipulated, analyzed, and the like. The results of any of these operations can then be, for example, displayed to one or more entities such as customer support, network operators, network planners, or the like.
Abstract: A technique for controlling the quality of one or more compressed images. The technique allows, for example, the selection of a target quality metric(s) and the compression of the image(s) such the compressed image(s) meets the metric(s). Alternatively, a target quality metric can be specified, and the image(s) compressed using parameters estimated to achieve the target quality. Optionally, the quality metric can also be made available to, for example, a user on an image processing system. The quality metrics can be, for example, for one or more layers, one or more images and/or one or more image sequences.
Abstract: Prediction of a channel capacity is accomplished based on a TDR echo without explicitly estimating the topology of the line. The prediction is based on obtaining a measured TDR echo, determining a theoretical TDR echo for a plurality of loop lengths, estimating the equivalent TDR length based on an optimization, updating the equivalent TDR length and utilizing the updated TDR length to predict one or more of the upstream and downstream data rates.
Abstract: To assist with the detection of unfiltered device(s), a system observes how the received noise changes between two links as the transmit signal is changed. Harmful unfiltered nonlinear devices will generate significant noise that depends on the transmitted signals; therefore, this additional noise can be quantified to some extent by comparing the observed noise for two different transmit signals. The total noise can be determined from the SNR if the received signal is known. The received signal may be read directly in some non-standard systems, or it may be determined from the known transmit signal and channel attenuation, which is sometimes the case in standard-compliant links, but often with a relatively large error. To circumvent this problem, certain embodiments of this invention only consider the change in noise between two links with the same channel attenuation. This differential comparison makes it unnecessary to accurately know the channel attenuation.
Abstract: In real biometric systems, false match rates and false non-match rates of 0% do not exist. There is always some probability that a purported match is false, and that a genuine match is not identified. The performance of biometric systems is often expressed in part in terms of their false match rate and false non-match rate, with the equal error rate being when the two are equal. There is a tradeoff between the FMR and FNMR in biometric systems which can be adjusted by changing a matching threshold. This matching threshold can be automatically, dynamically and/or user adjusted so that a biometric system of interest can achieve a desired FMR and FNMR.
Abstract: Using DSL modems as data collectors, the modems processes the data to, for example, allow easier interpretation of the line characteristics. In particular, the modems postprocess the data including calibration, filter compensation, determination of the SNR medley from the bits and gains tables and rate conversion. The interpretation process uses the postprocessed data and determines loop characterization, interferer detection, a data reduction estimation and a data rate estimation. The outputs of these determinations least allow for the characterization of the line conditions between the two modems.
Type:
Application
Filed:
October 10, 2013
Publication date:
February 6, 2014
Applicant:
AWARE, INC.
Inventors:
Murat Belge, Michael A. Tzannes, Halil Padir
Abstract: Through the use of a least squares minimization concept, the loop length, the number of bridged taps and length of the bridged taps on a transmission line can be determined from readily available modem data. In particular, the loop length, the number of bridge taps and the length of bridged taps can be estimated by comparing a measured frequency domain channel impulse response of the transmission line to a model of a loop that is comprised of multiple sections and multiple bridge taps.
Abstract: A modem or associated computing or testing device is configured to detect the presence of one or more faults that affect DSL communications, and upon their detection, generate, for example, an indication, communication or message that recommends corrective action. In this context, a fault is generally caused by one or more unfiltered devices, impulsive noises, malfunctioning modems, or other factor that does not affect measured attenuation or measured noise, but does affect the signal-to-noise ratio (SNR) of the link. In addition to being able to generate a message guiding a user through corrective action, the system can estimate the rate impact of the detected fault.
Abstract: In real biometric systems, false match rates and false non-match rates of 0% do not exist. There is always some probability that a purported match is false, and that a genuine match is not identified. The performance of biometric systems is often expressed in part in terms of their false match rate and false non-match rate, with the equal error rate being when the two are equal. There is a tradeoff between the FMR and FNMR in biometric systems which can be adjusted by changing a matching threshold. This matching threshold can be automatically, dynamically and/or user adjusted so that a biometric system of interest can achieve a desired FMR and FNMR.
Abstract: A diagnostic tool is adapted to include the capability of initiating one or more diagnostic tests, collecting the raw data from the diagnostic test(s) and transporting the raw diagnostic data to an OSS. The OSS interprets the raw diagnostic data and stores the results in a database. The stored results can be searched, sorted, manipulated, analyzed, and the like. The results of any of these operations can then be, for example, displayed to one or more entities such as customer support, network operators, network planners, or the like.
Abstract: Using DSL modems as data collectors, the modems processes the data to, for example, allow easier interpretation of the line characteristics. In particular, the modems postprocess the data including calibration, filter compensation, determination of the SNR medley from the bits and gains tables and rate conversion. The interpretation process uses the postprocessed data and determines loop characterization, interferer detection, a data reduction estimation and a data rate estimation. The outputs of these determinations least allow for the characterization of the line conditions between the two modems.
Type:
Grant
Filed:
May 4, 2012
Date of Patent:
October 15, 2013
Assignee:
Aware, Inc.
Inventors:
Murat Belge, Michael A. Tzannes, Halil Padir
Abstract: In real biometric systems, false match rates and false non-match rates of 0% do not exist. There is always some probability that a purported match is false, and that a genuine match is not identified. The performance of biometric systems is often expressed in part in terms of their false match rate and false non-match rate, with the equal error rate being when the two are equal. There is a tradeoff between the FMR and FNMR in biometric systems which can be adjusted by changing a matching threshold. This matching threshold can be automatically, dynamically and/or user adjusted so that a biometric system of interest can achieve a desired FMR and FNMR.
Abstract: To assist with the detection of unfiltered device(s), a system observes how the received noise changes between two links as the transmit signal is changed. Harmful unfiltered nonlinear devices will generate significant noise that depends on the transmitted signals; therefore, this additional noise can be quantified to some extent by comparing the observed noise for two different transmit signals. The total noise can be determined from the SNR if the received signal is known. The received signal may be read directly in some non-standard systems, or it may be determined from the known transmit signal and channel attenuation, which is sometimes the case in standard-compliant links, but often with a relatively large error. To circumvent this problem, certain embodiments of this invention only consider the change in noise between two links with the same channel attenuation. This differential comparison makes it unnecessary to accurately know the channel attenuation.
Abstract: Through the use of a least squares minimization concept, the loop length, the number of bridged taps and length of the bridged taps on a transmission line can be determined from readily available modem data. In particular, the loop length, the number of bridge taps and the length of bridged taps can be estimated by comparing a measured frequency domain channel impulse response of the transmission line to a model of a loop that is comprised of multiple sections and multiple bridge taps.