Patents Assigned to Axalta Coating Systems IP Co. LLC
-
Patent number: 11840639Abstract: A system for applying a first, a second, and a third coating composition. The system includes a first high transfer efficiency applicator defining a first nozzle orifice. The system further includes a second high transfer efficiency applicator defining a second nozzle orifice. The system further includes a third high transfer efficiency applicator defining a third nozzle orifice. The system further includes a substrate defining a target area. The first, the second, and the third high transfer efficiency applicators are configured to expel the first coating composition through the first nozzle orifice to the target area of the substrate, through the second nozzle orifice to the target area of the substrate, and through the third nozzle orifice to the target area of the substrate.Type: GrantFiled: November 30, 2018Date of Patent: December 12, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs
-
Patent number: 11820910Abstract: A system for applying a first and a second coating composition is provided herein. The system includes a first high transfer efficiency applicator defining a first nozzle orifice and a second high transfer efficiency applicator defining a second nozzle orifice. The system further includes a first reservoir a second reservoir. The system further includes a substrate defining a first target area and a second target area. The first high transfer efficiency applicator is configured to receive the first coating composition from the first reservoir and configured to expel the first coating composition through the first nozzle orifice to the first target area of the substrate. The second high transfer efficiency applicator is configured to receive the second coating composition from the second reservoir and configured to expel the second coating composition through the second nozzle orifice to the second target area of the substrate.Type: GrantFiled: November 30, 2018Date of Patent: November 21, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Michael S. Wolfe
-
Publication number: 20230364909Abstract: A nozzle plate defines at least one nozzle connected to the nozzle plate at a base, wherein the at least one nozzle has a height and a top having an inner width and an outer width, wherein a ratio of the height to the inner width is greater than 5, and wherein the nozzle plate comprises a borosilicate glass. The nozzle plate is formed via a method including providing a silicon wafer having a surface; providing a borosilicate glass wafer having a surface; etching the surface of the silicon wafer to form a plurality of trenches in the surface; anodically bonding the etched surface of the silicon wafer to the surface of the borosilicate glass wafer to form a two layer composite; heating the two layer composite at a temperature of at least about 750° C.; and releasing the silicon wafer from the borosilicate glass to form the nozzle plate.Type: ApplicationFiled: September 28, 2021Publication date: November 16, 2023Applicant: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Shih-Wa Wang
-
Publication number: 20230347380Abstract: Coated substrates, methods of coating substrates, and coatings for substrates are provided. In an exemplary embodiment, a method for coating a substrate includes coating the substrate with a primer to form a primer layer, where the primer comprises a primer conductivity additive, a primer adhesion promotor additive, a primer binder, and primer volatiles. The primer layer is flash dried to reduce the primer volatiles to about 20 weight percent or less. The primer layer is coated with a total color coat layer prior to curing the primer layer, and then the total color coat layer and the primer layer are cured to form a cured substrate coating. The cured substrate coating has a substrate coating percent transmissivity of specified amounts or less at four different wavelength ranges, and the cured primer layer has a primer layer transmissivity less than that of the substrate coating percent transmissivity.Type: ApplicationFiled: September 14, 2021Publication date: November 2, 2023Applicant: AXALTA COATING SYSTEMS IP CO., LLCInventors: Michael R. Koerner, Hao Huang
-
Patent number: 11781034Abstract: This description relates to low VOC water borne coating compositions with improved application properties based on a binder mixture comprising an urethanized polyester and an acrylic two-step polymer. This description further relates to the use of the low VOC water borne coating compositions for forming a coating, preferably for forming a clear coat, and more preferably for forming a clear coat in refinishing applications. Moreover, this description also relates to a method of forming a multilayer coating comprising a step of forming a coating layer by using the low VOC water borne coating composition.Type: GrantFiled: June 16, 2020Date of Patent: October 10, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: Wiebke Becker, Carmen Flosbach
-
Patent number: 11773285Abstract: Sealers, construction products, and methods of sealing construction products are provided. In an exemplary embodiment, a sealer includes a first part and a second part, the first part includes an epoxy resin having an epoxy resin molecular weight of about 5,000 Daltons or greater, and also includes an epoxy functional diluent having a diluent molecular weight of about 2,000 Daltons or less. The second part includes a crosslinking agent that is a polyamine. The sealer further includes a particulate with a specific gravity of from about 1 to about 5 grams per cubic centimeter.Type: GrantFiled: February 24, 2021Date of Patent: October 3, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: Eric Krall, James Bailey, Fong Vang
-
Patent number: 11768162Abstract: Low-cost devices for measuring radar transmission and/or reflectance of coated articles are provided. An exemplary low-cost radar transmission and reflection measurement device includes a radar transmitter that emits a radar signal, a radar target to which the radar signal is directed, and a radar receiver that receives the radar signal. Further, the exemplary low-cost device includes a sample holder located between the radar transmitter and the radar target and between the radar target and the radar receiver. The sample holder receives a sample including a coating. The low-cost device also includes a controller connected to the radar transmitter and radar receiver. The controller measures a radar signal loss due to the coating.Type: GrantFiled: January 17, 2023Date of Patent: September 26, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventor: Neil Richard Murphy
-
Patent number: 11760897Abstract: Solvent-borne coating compositions and methods for forming coated substrates are provided. In one example, a solvent-borne coating composition includes a solvent(s), a colorant(s), a binder including one or more resins, a sag control agent, and a wax dispersion. The sag control agent includes urea crystals that are present in an amount of from about 0.5 wt. % to about 6 wt. % based on the weight of the binder. The wax dispersion includes ethylene vinyl acetate-based wax particles present in an amount of from about 3 wt. % to about 8 wt. % based on the weight of the binder. The solvent-borne coating composition has a non-volatile content of from about 11 to about 30 vol. % based on the volume of the solvent-borne coating composition.Type: GrantFiled: July 29, 2020Date of Patent: September 19, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: Yongqing Huang, Delson Trindade, Beatriz E. Rodriguez-Douglas, Candice Pelligra, Gary W. Nickel
-
Patent number: 11760832Abstract: A polymer includes the reaction product of A, B, and C, and optionally D, wherein: A is a polyepoxide that is: the condensation product of phenol, formaldehyde, and epichlorohydrin; the condensation product of bisphenol A, formaldehyde, and epichlorohydrin; or a combination of said condensation products; B is at least one polyoxyalkylene with a terminal primary amine group wherein each polyoxyalkylene comprises an ethyleneoxy moiety and a propyleneoxy moiety and independently has the following structure: wherein R is a hydrogen atom or a C1-C4 group, and wherein each of x and y is independently from 0 to about 500 and x+y>0; and C is an anchoring compound that is: a secondary amine; a monocarboxylic acid; a cyclic imide; or a combination thereof, and D is an alkylating agent. This polymer is included in a composition that further includes a compound such as a particulate solid.Type: GrantFiled: February 23, 2021Date of Patent: September 19, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventor: Sheau-hwa Ma
-
Publication number: 20230251137Abstract: Methods and assemblies for aligning an optical device with a surface configured to receive a liquid coating and for measuring a parameter of a liquid coating are provided. An exemplary method for measuring a parameter of a liquid coating includes providing a mechanical carriage connected to a surface configured to receive a layer of the liquid coating. An exemplary mechanical carriage is configured to move to and from an operative configuration located at a set distance and orientation with respect to the surface. The method further includes locating an optical device in the mechanical carriage. Also, the method includes adjusting an orientation of the optical device within the mechanical carriage to an aligned orientation based on a relationship between the surface and a mechanical alignment feature on the optical device. The method further includes performing a parameter measurement operation with the optical device in the aligned orientation.Type: ApplicationFiled: February 9, 2022Publication date: August 10, 2023Applicant: AXALTA COATING SYSTEMS IP CO., LLCInventor: Neil Richard Murphy
-
Patent number: 11694364Abstract: Apparatuses and methods for approximating a 5-angle color difference model are provided, where the 5-angle color difference model utilizes a 5-angle equation. In an exemplary embodiment, an apparatus includes a storage device for storing instructions and one or more processors configured to execute the instructions. The processor(s) are configured to receive 3-angle standard and test color measurements, and enter the 3-angle standard measurement into a neural network empirical model. The neural network empirical model includes a plurality of input nodes, a plurality of hidden nodes connected to the input nodes, and a plurality of output nodes connected to the hidden nodes. The neural network empirical model is configured to output 3-angle tolerance values, and to calculate a 3-angle color difference value using the 5-angle equation for at least one of the 3 color measurement angles using the 3-angle standard and test color measurements and the 3-angle tolerance values.Type: GrantFiled: September 16, 2020Date of Patent: July 4, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: Larry E. Steenhoek, Dominic V. Poerio
-
Patent number: 11692878Abstract: Processor implemented systems and methods for matching color and appearance of a target coating are provided herein. A system includes a storage device for storing instructions, and one or more data processors. The data processor(s) are configured to execute instructions to receive a target image of a target coating. The data processor(s) are also configured to apply a feature extraction analysis process that divides the target image into a plurality of target pixels for image analysis.Type: GrantFiled: December 12, 2018Date of Patent: July 4, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: Larry E. Steenhoek, Robert V. Canning, Dominic V. Poerio, Neil Murphy
-
Publication number: 20230191450Abstract: Methods of coating a substrate are provided. In an exemplary embodiment, a coating composition is applied to the substrate with a high transfer efficiency applicator to produce a coating layer, where the high transfer efficiency applicator and the substrate remain spatially separate while the coating composition is applied. A droplet of the coating composition expelled from the high transfer efficiency applicator has a particle size of about 10 microns or greater. The coating composition has a viscosity of from about 1,000 to about 1,000,000 centipoise when the coating composition is subject to a shear rate of about 0.1 reciprocal seconds (s?1). However, the coating composition is non-Newtonian such that a coating composition viscosity decreases when the shear rate is increased to the coating composition. The coating layer is impinged with a gas such that a coating layer surface moves upon impingement with the gas.Type: ApplicationFiled: December 20, 2022Publication date: June 22, 2023Applicant: AXALTA COATING SYSTEMS IP CO., LLCInventors: Shih-wa Wang, Cameron Stevens, James Neal, Carmen Flosbach, Michael S. Wolfe, John R. Moore
-
Patent number: 11674849Abstract: Methods and systems for determining a radar compatible coating are provided. In one example, the method includes obtaining a reflectance measurement of a target coating to characterize a color of the target coating. One or more candidate formulas are generated to determine color matching to the color of the target coating. A corresponding color and a corresponding radar property for each of the one or more candidate formulations is predicted. A radar compatible coating composition that is the same or substantially similar in appearance to the target coating is generated. Generating the radar compatible coating composition is based at least in part on the corresponding color and the corresponding radar property for one of the one or more candidate formulations.Type: GrantFiled: June 16, 2021Date of Patent: June 13, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: Dominic V. Poerio, Neil R. Murphy
-
Publication number: 20230160838Abstract: Low-cost devices for measuring radar transmission and/or reflectance of coated articles are provided. An exemplary low-cost radar transmission and reflection measurement device includes a radar transmitter that emits a radar signal, a radar target to which the radar signal is directed, and a radar receiver that receives the radar signal. Further, the exemplary low-cost device includes a sample holder located between the radar transmitter and the radar target and between the radar target and the radar receiver. The sample holder receives a sample including a coating. The low-cost device also includes a controller connected to the radar transmitter and radar receiver. The controller measures a radar signal loss due to the coating.Type: ApplicationFiled: January 17, 2023Publication date: May 25, 2023Applicant: AXALTA COATING SYSTEMS IP CO., LLCInventor: Neil Richard Murphy
-
Patent number: 11655391Abstract: A system for applying a coating composition to a substrate utilizing a high transfer efficiency applicator is provided herein. The system includes a high transfer efficiency applicator defining a nozzle orifice. The coating composition comprises a carrier and a binder. The coating composition has a viscosity of from about 0.002 Pa*s to about 0.2 Pa*s, a density of from about 838 kg/m3 to about 1557 kg/m3, a surface tension of from about 0.015 N/m to about 0.05 N/m, and a relaxation time of from about 0.0005 s to about 0.02 s. The high transfer efficiency applicator is configured to expel the coating composition through the nozzle orifice to the substrate to form a coating layer. At least 80% of the droplets of the coating composition expelled from the high transfer efficiency applicator contact the substrate.Type: GrantFiled: November 30, 2018Date of Patent: May 23, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang
-
Patent number: 11649371Abstract: A method of forming a coating composition for application to a substrate utilizing a high efficiency transfer applicator. The method includes identifying at least one of an Ohnesorge number (Oh) for the coating composition, a Reynolds number (Re) for the coating composition, or a Deborah number (De) for the coating composition. The method includes obtaining at least one of a viscosity (?) of the coating composition, a surface tension (?) of the coating composition, a density (?) of the coating composition, a relaxation time (?) of the coating composition, a nozzle diameter (D) of the high efficiency transfer applicator, or an impact velocity (v) of the high efficiency transfer applicator. The method includes forming the coating composition having at least one of the viscosity (?), the surface tension (?), or the density (?).Type: GrantFiled: November 30, 2018Date of Patent: May 16, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin
-
Patent number: 11649373Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator is provided herein. The coating composition includes monomeric, oligomeric, or polymeric compounds having a number average molecular weight of from about 400 to about 20,000 and having a free-radically polymerizable double bond. The coating composition further includes a photo initiator. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.Type: GrantFiled: November 30, 2018Date of Patent: May 16, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
-
Patent number: 11649374Abstract: A system for applying a coating composition to a substrate utilizing a high transfer efficiency applicator is provided herein. The system includes a storage device for storing instructions for performing a matching protocol, and one or more data processors configured to execute the instructions to, receive, by one or more data processors, target image data of a target coating, the target image data generated by an electronic imaging device, and apply the target image data to a matching protocol to generate application instructions. The system further includes a high transfer efficiency applicator defining a nozzle orifice. The high transfer efficiency applicator is configured to expel the coating composition through the nozzle orifice to the substrate to form a coating layer. The high transfer efficiency applicator is configured expel the coating composition based on the application instructions.Type: GrantFiled: November 30, 2018Date of Patent: May 16, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Barry Snyder, Larry Steenhoek
-
Patent number: 11649372Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator. The coating composition includes a carrier and a binder comprising an elastomeric resin in an amount of at least 50 weight %, wherein the elastomeric resin has an Elongation to Break of at least 500% according to DIN 53 504. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.Type: GrantFiled: November 30, 2018Date of Patent: May 16, 2023Assignee: AXALTA COATING SYSTEMS IP CO., LLCInventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder