Abstract: Parabolic reflector includes a number of sectors (2) being connected to each other at a central hub (3), the parabolic reflector being collapsible from an extended position (9), in which the sectors together extend 360 °around the hub (3), to a retracted position (8), in which the sectors (2) are brought together into a compact unit. Each sector (2) is rigid and is firmly joined to a cylindrical hub sleeve (4). The hub sleeves (4) together form the hub (3), around which the sectors (2) are journalled for limited movement around a central axis extending through the center of the hub (3). The hub sleeves (4) are concentrically arranged one radially inside the other with consecutively decreasing radii, and the hub sleeves (4) have mutually cooperating guiding surfaces that permit axial displacement of the hub so as to enable relative rotation there between.
Abstract: Parabolic reflector comprising a number of sectors (2) being connected to each other at a central hub (3), the parabolic reflector being collapsible from an extended position (9), in which the sectors together extend 360° around the hub (3), to a retracted position (8), in which the sectors (2) are brought together into a compact unit. Each sector (2) is rigid and is firmly joined to a cylindrical hub sleeve (4). The hub sleeves (4) together form said hub (3), around which the sectors (2) are journalled for limited movement around a central axis extending through the center of the hub (3). The hub sleeves (4) are concentrically arranged one radially inside the other with consecutively decreasing radii, and the hub sleeves (4) have mutually cooperating guiding surfaces that permit axial displacement of the hub so as to enable relative rotation there between.