Patents Assigned to Babcock & Wilcox Technical Services Group, Inc.
  • Patent number: 9038471
    Abstract: A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: May 26, 2015
    Assignee: Babcock & Wilcox Technical Services Group, Inc.
    Inventors: Daniel T. MacLauchlan, Bradley E. Cox
  • Publication number: 20140219059
    Abstract: A method for efficiently achieving full-matrix ultrasonic data capture which includes the steps of providing an ultrasound array apparatus, the ultrasound array apparatus further comprising a probe, collecting data over a plurality of inspection locations, generating a plurality of data matrices, each of the data matrices reflecting data collected at the locations, and collecting, initially, a subset of a quantity of data needed for reconstruction of each of the inspection locations. In the method, as the probe moves from collection location to collection location, a data matrix at a prior collection location is gradually filled in as the probe moves to subsequent collection locations. In certain embodiments physical scanning of a probe with few elements is replaced by electronically scanning using an array with many elements.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES GROUP, INC.
    Inventors: Steven J. Younghouse, Daniel T. MacLauchlan, Nicholas J. Borchers
  • Patent number: 8767905
    Abstract: A combinatorial heterogeneous-homogeneous reactor configuration in which an array or groups of homogeneous fuel assemblies are interlinked together in a heterogeneous lattice. The present invention removes the limitation of a homogeneous reactor by providing a reactor concept that utilizes the inherent advantages of homogeneous fuel elements but in a heterogeneous fuel lattice arrangement that limits the power density of any one homogeneous fuel element and yet forms a reactor arrangement that is capable of producing any product demand of interest. The present invention provides a method for producing medical isotopes by the use of a modular reactor core comprised of homogeneous fuel assemblies arranged in a regular rectangular or triangular pitch lattice.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: July 1, 2014
    Assignee: Babcock & Wilcox Technical Services Group, Inc.
    Inventors: Gary W. Neeley, James B. Inman
  • Patent number: 8718218
    Abstract: The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 6, 2014
    Assignee: Babcock & Wilcox Technical Services Group, Inc.
    Inventors: Timothy A Policke, Erik T Nygaard
  • Publication number: 20140112428
    Abstract: The present invention relates generally to the field of cooling systems and/or methods for cooling a heated, fissioning, or exothermic solution. In one embodiment, the present invention relates to a cooling system, and method of utilizing same, for cooling a heated, fissioning, or exothermic solution that utilizes submerged cooling coils where the system of the present invention relies on a combination of multiple factors to achieve the desired effect. In one embodiment, the present invention relates to a cooling system, and method of utilizing same, for cooling a heated, fissioning, or exothermic solution that utilizes submerged cooling coils where the system of the present invention relies on the combination of: (i) cooling coil geometry; (ii) cooling coil location and design; and (iii) cooling coil operational pressure.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 24, 2014
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES GROUP, INC.
    Inventors: Timothy A. Policke, Erik T. Nygaard, Scott B. Aase
  • Publication number: 20140112858
    Abstract: The present invention relates generally to the field of medical isotope production by fission of uranium-235 and the fuel utilized therein (e.g., the production of suitable Low Enriched Uranium (LEU is uranium having 20 weight percent or less uranium-235) fuel for medical isotope production) and, in particular to a method for producing LEU fuel and a LEU fuel product that is suitable for use in the production of medical isotopes. In one embodiment, the LEU fuel of the present invention is designed to be utilized in an Aqueous Homogeneous Reactor (AHR) for the production of various medical isotopes including, but not limited to, molybdenum-99, cesium-137, iodine-131, strontium-89, xenon-133 and yttrium-90.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 24, 2014
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES GROUP, INC.
    Inventors: Timothy A. Policke, Scott B. Aase, William R. Stagg
  • Publication number: 20140105349
    Abstract: The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES GROUP, INC.
    Inventors: Erik T. Nygaard, Peter L. Angelo, Scott B. Aase
  • Patent number: 8449850
    Abstract: A method for the extraction and purification of molybdenum, the method comprising the steps of: transferring an irradiated fuel solution to an extraction system, the irradiated fuel solution comprising iodine and molybdenum and other fission products, the extraction system comprising at least one sorbent column; passing the irradiated fuel solution upwards through the at least one sorbent-containing extraction column; directing the irradiated fuel solution towards a fuel management system by means of at least one discharge alignment valve; directing the extraction column eluate towards an iodine removal system; removing the iodine from the extraction column eluate; purifying the extraction column eluate; and collecting the purified eluate. Also disclosed is an apparatus for accomplishing the aforementioned method.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: May 28, 2013
    Assignee: Babcock & Wilcox Technical Services Group, Inc.
    Inventors: Daniel E. Glenn, Scott B. Aase, William R. Stagg
  • Publication number: 20110120223
    Abstract: A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 26, 2011
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES GROUP, INC.
    Inventors: Daniel T. MacLauchlan, Bradley E. Cox
  • Patent number: 7823454
    Abstract: A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: November 2, 2010
    Assignee: Babcock & Wilcox Technical Services Group, Inc.
    Inventors: Daniel T. MacLauchlan, Bradley E. Cox