Patents Assigned to Baker Hughes Incorporated
  • Publication number: 20190331466
    Abstract: A system and apparatus for providing an apparatus for use in a wellbore. The apparatus includes an apparatus body defining a volume, a propellant disposed within the volume, wherein the propellant has a first burn rate, and at least one propellant insert disposed within the propellant, wherein the propellant insert has a second burn rate, and the second burn rate is different than the first burn rate.
    Type: Application
    Filed: July 10, 2019
    Publication date: October 31, 2019
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Suman Khatiwada, John Welch, Anil Sadana, Ramon Garza
  • Patent number: 10443362
    Abstract: Systems and methods for detecting and arresting free fall of a mover in a linear motor for an ESP. In one embodiment, the motor of the ESP is initially automatically commutated, but is limited by the back pressure of the fluid being pumped. The drive system of the ESP monitors the speed of the mover in the linear motor and determines whether the speed of the mover exceeds a threshold speed (e.g., by determining whether time differentials between transitions in position sensor signals fall below a threshold value). If the speed of the mover does not exceed the threshold speed, the motor is deemed not to be in free fall. If the speed of the mover exceeds the threshold speed, the motor is considered to be in free fall, so automatic commutation of the motor is disabled and the mover is advanced through its stroke at a predetermined speed.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: October 15, 2019
    Assignee: Baker Hughes Incorporated
    Inventor: Evan G. Mackay
  • Patent number: 10435974
    Abstract: Activation modules for selectively sealing entrances to inner barrels of coring tools may include an activator body and an activation rod movable between a first position and a second position. A locking element may temporarily hold the activator body in place and a sealing element may form a temporary seal. The activation rod may include a locking portion, a releasing portion of a smaller diameter, a sealing portion, and an unsealing portion of a smaller diameter. The locking portion may be aligned with the locking element and the sealing portion may be aligned with the sealing element when the activation rod is in the first position. The releasing portion may be aligned with the locking element and the unsealing portion may be aligned with the sealing element when the activation rod is in the second position.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: October 8, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Christoph Wesemeier, Thomas Uhlenberg
  • Patent number: 10428591
    Abstract: A cutting element for an earth-boring tool includes a substrate and volume of superabrasive material positioned on the substrate. The volume of superabrasive material includes a cutting face having at least one recess extending into the volume of superabrasive material and/or at least one protrusion extending outward from the volume of superabrasive material. The volume of superabrasive material includes a first chamfer surface having a peripheral edge and a radially innermost edge. The peripheral edge of the first chamfer surface is located proximate a cutting edge of the volume of superabrasive material. A radial width of the first chamfer surface is between about 0.002 inch and about 0.045 inch. The volume of superabrasive material also includes a second chamfer surface having a peripheral edge and a radially innermost edge. The peripheral edge of the second chamfer surface is located adjacent the radially innermost edge of the first chamfer surface.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: October 1, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Suresh G. Patel, David A. Stockey, Alejandro Flores, Anthony A. DiGiovanni, Danny E. Scott, Leroy W. Ledgerwood, III
  • Patent number: 10422204
    Abstract: A system and method for stimulating hydrocarbon production from a wellbore that perforates the formation around the wellbore in strategic locations so that fractures can be formed in the formation having specific orientations. The system includes deep penetration perforators that extend past a portion of the formation adjacent the wellbore having locally high internal stresses (a stress cage); and big hole perforators that form perforations with a larger entrance diameter. The perforators form perforations in the formation that are axially consolidated along the wellbore. After perforating, the wellbore is hydraulically fractured with high pressure fluid, which creates fractures in a formation surrounding the wellbore that extend radially outward from the perforations. Creating perforations that are axially consolidated reduces the chances of forming competing fractures in the formation during fracturing.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: September 24, 2019
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Timothy Sampson, Stephen Zuklic, Khaled Gasmi, Brent W. Naizer, Rajani Satti, Scott G. Nelson, Harold D. Brannon, Jason McCann, James N. Gilliat, Juan C. Flores
  • Patent number: 10415371
    Abstract: A method of estimating properties of wellbore cement by penetrating the cement, and monitoring the amount of energy or power required for penetrating the cement. Penetrators include a drill bit that bores into the cement, and probes or pins that are forced into the cement. The energy or power monitored can be current and/or voltage supplied to a motor that drives the drill bit or probe. Comparing the monitored energy or power with that required to penetrate a reference cement sample of known properties can yield information about the cement being sampled. When the wellbore is lined with multiple coaxially disposed strings of casing with cement between adjacent strings and on the outer surface of the outer string; the method further includes obtaining core samples from portions of each string, each layer of cement, and formation adjacent the wellbore.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 17, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Ian Gareth Draper, Hermanus J. Nieuwoudt, Mohamed Daoud
  • Patent number: 10408208
    Abstract: Systems and methods for controlling downhole linear motors to minimize connections to surface equipment. In one embodiment, an ESP system is coupled by a power cable to equipment at the surface of a well. The ESP system includes a linear motor and a reciprocating pump. The motor has a set of position sensors that sense the position of a mover in the motor. Combining circuitry (E.G., XOR gate) combines the outputs of the position sensors into a single composite signal in which signal components corresponding to the position sensors are indistinguishable. A single channel carries the composite signal from the ESP system to the surface equipment. A control system determines a starting position of the motor and determines its subsequent position based on transitions in the composite signal. The motor is then operated based on the position determined from the composite signal.
    Type: Grant
    Filed: March 20, 2016
    Date of Patent: September 10, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Gary Williams, Evan G. Mackay
  • Patent number: 10399119
    Abstract: A multi-layer film for use in forming a layer of hardfacing on a surface of a tool includes a first layer and a second layer covering at least a portion of a surface of the first layer. The layers each include a polymer material and a plurality of particles dispersed throughout the polymer material. An intermediate structure includes a body of an earth-boring tool, a first material layer disposed over a surface of the body, and a second material layer disposed over the first material layer. A method of applying hardfacing includes providing a first material layer on a surface of a body of an earth-boring tool, providing a second material layer adjacent the first material layer, heating the body and removing the polymer material from the body of the earth-boring tool, and heating the body of the earth-boring tool to a higher temperature to form a layer of hardfacing material.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 3, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, Travis E. Puzz
  • Patent number: 10401203
    Abstract: A flowmeter for use in a borehole that includes a transmitter and receivers spaced axially away from the transmitter. Energizing the transmitter creates electrical field lines that extend between the transmitter and the receivers, and that pass through fluid flowing past the flowmeter. The magnitude of the electrical field lines at each of the receivers is measured, and varies in response to different types of fluid flowing past the flowmeter, and changes in phase of the fluid. Example transmitters and receivers include coils and electrodes. The transmitters and receivers can define elongate arrays, where the arrays are arranged parallel to, oblique, or perpendicular to an axis of the borehole. Multiple array orientations provide a radial cross sectional image of the flowing fluid. Thus not only can multi-phase flow be detected, but the type of flow regime can be identified.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: September 3, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Otto N. Fanini, Mohamed Daoud
  • Publication number: 20190257194
    Abstract: A dual telemetric coiled tubing running string for disposing a bottom hole assembly into a wellbore.
    Type: Application
    Filed: November 8, 2016
    Publication date: August 22, 2019
    Applicant: Baker Hughes Incorporated
    Inventors: Louis D. Garner, Silviu Livescu, Thomas J. Watkins
  • Patent number: 10374481
    Abstract: Systems and methods for reducing vibration in an electric motor using rotor bearing assemblies that are positioned within a bore of the stator to support the motor's shaft and rotor sections so that they can rotate within the stator bore. Each rotor bearing assembly includes an outer bearing and an inner bearing sleeve that rotates within the bearing. The bearing is secured so that its rotation within the stator is inhibited, but it can move axially. Each end of the bearing sleeve has a conically tapered contact surface which contacts and secures the corresponding rotor section and centers the rotor section with respect to the axis of rotation of the bearing. The contact surfaces of the rotor sections may be chamfered at an angle complementary to the tapered contact surface of the bearing sleeve to distribute the contact pressure between them over a greater contact surface area.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 6, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: James C. Clingman, Michael A. Forsberg
  • Patent number: 10370911
    Abstract: Methods of drilling earth formations may involve removing a portion of an underlying earth formation utilizing cutting elements of an earth-boring drill bit. A rotational speed of the drill string may be sensed utilizing a first sensor. A rate of penetration of the drill string during advancement of the earth-boring drill bit may be sensed utilizing a second sensor. An instantaneous average depth of cut of cutting elements of the earth-boring drill bit may be determined utilizing a control unit to calculate the instantaneous average depth of cut based on a sensed rotational speed of the drill string and a sensed speed of advancement of the drill string. The weight on the earth-boring drill bit may be increased utilizing the drawworks when the instantaneous average depth of cut is less than the predetermined minimum depth of cut.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: August 6, 2019
    Assignees: Baker Hughes Incorporated, BP Exploration Operating Company Limited
    Inventors: David A. Curry, Rudolf Carl Pessier, Reed W. Spencer, Andrea Kuesters, John Wingate
  • Patent number: 10344537
    Abstract: An earth-boring tool comprises a body, a plurality of blades, and cutting elements. The body has a face at a leading end thereof and comprises a cone region, a nose region, a flank region, a shoulder region, and a gage region. The plurality of blades extends longitudinally and radially over the face. The cutting elements are disposed within the shoulder region of the body on different blades of the plurality of blades than one another, a first of the cutting elements exhibiting a different size than a second of the cutting elements. A method of forming an earth-boring tool and a method of forming a borehole in a subterranean formation are also described.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: July 9, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: David Gavia, Kenneth R. Evans, Bibek Ghimire
  • Patent number: 10337255
    Abstract: Cutting elements for earth-boring tools include one or more recesses and/or one or more protrusions in a cutting face of a volume of superabrasive material. The superabrasive material may be disposed on a substrate. The cutting face may be non-planar. The recesses and/or protrusions may include one or more linear segments. The recesses and/or protrusions may comprise discrete features that are laterally isolated from one another. The recesses and/or protrusions may have a helical configuration. The volume of superabrasive material may comprise a plurality of thin layers, at least two of which may differ in at least one characteristic. Methods of forming cutting elements include the formation of such recesses and/or protrusions in and/or on a cutting face of a volume of superabrasive material. Earth-boring tools include such cutting elements, and methods of forming earth-boring tools include attaching such a cutting element to a tool body.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: July 2, 2019
    Assignees: Baker Hughes Incorporated, Element Six Limited
    Inventors: Anthony A. DiGiovanni, Yavuz Kadioglu, Danny E. Scott, Matthew J. Meiners, Rudolf Carl Pessier, Nicholas J. Lyons, Clement D. van der Riet, Donald Royceton Herschell, Cornelis Roelof Jonker, Roger William Nilen, Gerard Peter Dolan
  • Patent number: 10323463
    Abstract: Methods of making cutting elements for earth-boring tools may involve placing a powdered mixture into a mold. The powdered mixture may include a plurality of core particles comprising a diamond material and having an average diameter of between 1 ?m and 500 ?m, a coating material adhered to and covering at least a portion of an outer surface of each core particle of the plurality of core particles, the coating material comprising an amine terminated group, and a plurality of nanoparticles selected from the group consisting of carbon nanotubes, nanographite, nanographene, non-diamond carbon allotropes, surface modified nanodiamond, nanoscale particles of BeO, and nanoscale particles comprising a Group VIIIA element adhered to the coating material. The powdered mixture may be sintered to form a polycrystalline diamond table. The polycrystalline diamond table may be attached to a substrate.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: June 18, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Soma Chakraborty, Oleksandr V. Kuznetsov, Gaurav Agrawal
  • Publication number: 20190178058
    Abstract: A fuel cell for use in downhole applications stores steam created by the chemical reaction in a desiccant like Zeolite. The fuel cell also uses ambient hydrostatic pressure to increase cell voltage and power-density.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 13, 2019
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Thomas KRUSPE, Joachim F. OPPELT
  • Patent number: 10316648
    Abstract: A system and method of estimating properties of a wellbore fluid that directs the fluid through a cavity, and generates acoustic waves in the fluid while in the cavity. The acoustic waves are generated by oscillating an electroactive material over a range of frequencies. An electrical admittance spectra of the electroactive material is measured over the range of frequencies; where the electrical admittance spectra includes the magnitude, real, and imaginary components. Differences between the maximum values for each component and a vacuum electrical spectra are calculated, the differences are substituted into estimator equations to estimate the fluid properties. Electrical admittance spectra of the electroactive material was simulated for a series of known fluids flowing through the cavity, and a multi-regression statistical analysis was then used to derive the estimator equations.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: June 11, 2019
    Assignee: BAKER HUGHES INCORPORATED
    Inventor: Dwight W. Swett
  • Patent number: 10309157
    Abstract: A cutting element for use in a drilling bit and/or a milling bit having a cutter body made of a substrate having an upper surface, and a superabrasive layer overlying the upper surface of the substrate. The cutting element further includes a sleeve extending around a portion of a side surface of the superabrasive layer and a side surface of the substrate, wherein the sleeve exerts a radially compressive force on the superabrasive layer.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 4, 2019
    Assignees: Baker Hughes Incorporated, Element Six (Production) (PTY) LTD., Element Six Limited
    Inventors: Anthony A. DiGiovanni, Nicholas J. Lyons, Matthew S. Hale, Konstantin E. Morozov, John H. Liversage, Danny E. Scott, L. Allen Sinor
  • Patent number: 10296678
    Abstract: A method of controlling drill bit trajectory in a subterranean formation includes receiving drilling parameters for operating a specific bottomhole assembly (BHA), constructing, with a computer processor, a directional drill-ahead simulator including a computer model of the BHA and the subterranean formation, calculating axial motion and lateral motion of a drill bit connected to a bottom end of the BHA using formation parameters and drilling parameters, predicting bit walk of the drill bit by accounting for and calculating contact forces and frictional forces between the BHA and a wall of a borehole in the subterranean formation using the computer model of the BHA, and determining an adjusted drill bit trajectory to account for the predicted bit walk. The method includes determining adjusted drilling parameters for operating the BHA to substantially follow the adjusted drill bit trajectory and operating the BHA according to the adjusted drilling parameters.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: May 21, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Reed W. Spencer, Timothy P. Uno, Jonathan M. Hanson
  • Patent number: 10287824
    Abstract: A polycrystalline diamond compact includes a polycrystalline diamond material having a plurality of grains of diamond bonded to one another by inter-granular bonds and an intermetallic gamma prime (??) or ?-carbide phase disposed within interstitial spaces between the inter-bonded diamond grains. The ordered intermetallic gamma prime (??) or ?-carbide phase includes a Group VIII metal, aluminum, and a stabilizer. An earth-boring tool includes a bit body and a polycrystalline diamond compact secured to the bit body. A method of forming polycrystalline diamond includes subjecting diamond particles in the presence of a metal material comprising a Group VIII metal and aluminum to a pressure of at least 4.5 GPa and a temperature of at least 1,000° C. to form inter-granular bonds between adjacent diamond particles, cooling the diamond particles and the metal material to a temperature below 500° C., and forming an intermetallic gamma prime (??) or ?-carbide phase adjacent the diamond particles.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 14, 2019
    Assignees: Baker Hughes Incorporated, Diamond Innovations, Inc
    Inventors: Marc W. Bird, Andrew Gledhill