Patents Assigned to Ballard Power System, Inc.
-
Patent number: 11431014Abstract: A membrane electrode assembly comprises an anode electrode comprising an anode catalyst layer and an anode gas diffusion layer, a cathode electrode comprising a cathode catalyst layer and a cathode gas diffusion layer, a polymer electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, and a layer comprising a fluoroalkyl-phosphonic acid compound between at least one of the anode gas diffusion layer and the anode catalyst layer, the anode catalyst layer and the polymer electrolyte membrane, the polymer electrolyte membrane and the cathode catalyst layer, and the cathode catalyst layer and the cathode gas diffusion layer.Type: GrantFiled: July 17, 2018Date of Patent: August 30, 2022Assignee: Ballard Power Systems Inc.Inventors: Rajesh Bashyam, Ping He, Siyu Ye
-
Patent number: 10895604Abstract: Systems and methods to provide a low voltage interface coupleable between an energy storage device or a DC power source (e.g., fuel cell stack, battery) and one or more AC signal diagnostic systems. The low voltage interface reduces a voltage of the DC power source and supplies the reduced voltage to the one or more AC signal diagnostic systems without affecting the results of the measurements obtained by the one or more AC signal diagnostic systems. Such functionality provides a safer method for performing advanced analysis (e.g., EIS, frequency analysis) while utilizing lower cost and/or smaller components.Type: GrantFiled: July 13, 2016Date of Patent: January 19, 2021Assignees: Ballard Power Systems Inc., Simon Fraser UniversityInventors: Jacob W. Devaal, Hooman Homayouni, Farid Golnaraghi
-
Patent number: 9735435Abstract: A flow field plate comprises a first flow field; an opposing second flow field; and at least one flow channel formed in the first flow field, the at least one flow channel comprising: a first side and an opposing second side separated by an open-faced top and a bottom; and a first side channel formed in a portion of the open-faced top and in a portion of the first side along a continuous length of the at least one flow channel, the first side channel comprising a first side wall and a first bottom wall; wherein the first side wall of the first side channel and the first bottom wall of the first side channel form an obtuse angle in cross-section; and a depth of the bottom of the at least one flow channel is greater than a depth of the bottom wall of the first side channel.Type: GrantFiled: March 7, 2011Date of Patent: August 15, 2017Assignee: Ballard Power Systems Inc.Inventors: Jeffrey Dean Glandt, Bevan Hoskyn Moss, Daniel Brent Mackay
-
Patent number: 9461328Abstract: The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).Type: GrantFiled: August 20, 2012Date of Patent: October 4, 2016Assignee: Ballard Power Systems Inc.Inventor: Michael T Lines
-
Patent number: 9455456Abstract: An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).Type: GrantFiled: June 29, 2015Date of Patent: September 27, 2016Assignee: Ballard Power Systems Inc.Inventors: Kazuo Saito, Tommy Skiba, Kirtikumar H. Patel
-
Patent number: 9401524Abstract: A fuel cell stack formed of repeating cell units is provided wherein each cell unit includes a fuel cell having an anode side and a cathode side; an anode side frame; a cathode side frame; a bipolar plate having an anode side interconnect adjacent to the anode side frame and a cathode side interconnect adjacent to a cathode side frame of an adjacent cell unit; a cathode side seal between the fuel cell and the cathode side frame; and an anode side seal between the fuel cell and the anode side frame, wherein at least one of the anode side interconnect, cathode side interconnect, anode side seal and cathode side seal are compliant.Type: GrantFiled: September 29, 2004Date of Patent: July 26, 2016Assignee: Ballard Power Systems Inc.Inventors: Sunil G. Warrier, Jean Yamanis, James R. Maus, Benoit Olsommer
-
Patent number: 9240598Abstract: In solid polymer fuel cells employing framed membrane electrode assemblies, a conventional anode compliant seal is employed in combination with a cathode non-compliant seal to provide for a thinner fuel cell design, particularly in the context of a fuel cell stack. This approach is particularly suitable for fuel cells operating at low pressure.Type: GrantFiled: August 6, 2014Date of Patent: January 19, 2016Assignee: Ballard Power Systems Inc.Inventors: Keith M. Martin, Samira Barakat, Emerson R. Gallagher
-
Patent number: 9147894Abstract: A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system 10 in a manner that increases the overall efficiency and decreases the overall weight of system 10. The system and method include a secondary blower 30 for boosting air stream pressure level sufficient for operation of a reformer 12 that is designed to minimize pressure drop; an integrated heat exchanger 18 for recovering heat from exhaust 36 and comprising multiple flow fields 18A, 18B, 18C for ensuring inlet temperature requirements of a solid oxide fuel cell 14 are met; and a thermal enclosure 46 for separating hot zone 48 components from cool zone 50 components for increasing thermal efficiency of the system and better thermal management.Type: GrantFiled: January 9, 2009Date of Patent: September 29, 2015Assignee: Ballard Power Systems Inc.Inventors: Robert J. Braun, Sean C. Emerson, Justin R. Hawkes, Ellen Y. Sun, Jean Yamanis, Tobias H. Sienel, Balbir Singh Bal, Stuart Anthony Astley, Thomas D. Radcliffe, James T. Beals, Walter H. Borst, Jr., May L. Corn, Louis Chiappetta, Jr., John T. Costello, Robert R. Hebert, Thomas Henry Vanderspurt
-
Patent number: 9120683Abstract: An electrochemical device includes a ceramic electrode, a metallic interconnect, and a ceramic bond material that bonds the ceramic electrode and the metallic interconnect together. The ceramic material includes manganese-cobalt-oxide that is electrically conductive such that electric current can flow between the ceramic electrode and the metallic interconnect.Type: GrantFiled: February 8, 2010Date of Patent: September 1, 2015Assignee: Ballard Power Systems Inc.Inventors: Jean Yamanis, Dustin Frame, Lei Chen, Ellen Y. Sun
-
Publication number: 20150244003Abstract: An exemplary fuel cell component comprises a reactant distribution plate including a plurality of channels configured for facilitating gas reactant flow such that the gas reactant may be used in an electrochemical reaction for generating electricity in a fuel cell. Each of the channels has a length that corresponds to a direction of reactant gas flow along the channel. A width of each channel is generally perpendicular to the length. A depth of each channel is generally perpendicular to the width and the length. At least one of the width or the depth has at least two different dimensions at a single lengthwise location of the channel.Type: ApplicationFiled: September 7, 2012Publication date: August 27, 2015Applicant: Ballard Power Systems Inc.Inventor: Robert Mason Darling
-
Publication number: 20150229202Abstract: A controller (11a) of a DC/DC converter (10a) responsive to power output of a fuel cell power plant (13) operates under a control strategy which determines if fuel cell voltage exceeds a limit, and if so, provided neither fuel cell output current nor DC/DC converter output current is excessive, causes an increase in DC/DC converter duty cycle to thereby increase power demanded from the fuel cell stack. This eliminates the need for conventional voltage limiting to protect fuel cells from corrosion. Digital control loops and state machines are illustrated.Type: ApplicationFiled: May 21, 2012Publication date: August 13, 2015Applicant: Ballard Power Systems, Inc.Inventors: Subbarao Varigonda, Daniel F. Orlowski
-
Publication number: 20150221962Abstract: An exemplary method of cooling a fuel cell includes directing coolant through a coolant supply channel near at least one reactant flow channel. The coolant supply channel extends from a coolant inlet spaced from a reactant inlet to a coolant outlet. The coolant supply channel includes a first portion starting at the coolant inlet and a second portion near the reactant inlet. The first portion facilitates coolant flow from the coolant inlet directly toward the second portion. The second portion includes a plurality of channel sections that collectively facilitate coolant flow in a plurality of directions along the second portion near the reactant inlet. The coolant supply channel includes a third portion between the second portion and the coolant outlet.Type: ApplicationFiled: July 20, 2012Publication date: August 6, 2015Applicant: Ballard Power Systems Inc.Inventors: Jonathan Daniel O'Neill, Sushant S. Bhadange
-
Publication number: 20150214560Abstract: An exemplary fuel cell component includes a plate having a plurality of channels. At least a first one of the channels is configured differently than others of the channels so that the first channel provides a first cooling capacity to a selected portion of the plate. The others of the channels provide a second, lesser cooling capacity to at least one other portion of the plate.Type: ApplicationFiled: August 30, 2012Publication date: July 30, 2015Applicant: Ballard Power Systems Inc.Inventors: Sushant S. Bhadange, Jeffrey G. Lake
-
Patent number: 9083016Abstract: An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).Type: GrantFiled: August 6, 2012Date of Patent: July 14, 2015Assignee: Ballard Power Systems Inc.Inventors: Kazuo Saito, Tommy Skiba, Kirtikumar H. Patel
-
Publication number: 20150171452Abstract: An exemplary fuel cell electrode assembly includes a membrane. A first electrode is on the first side of the membrane. A second electrode is on a second side of the membrane. A first gas diffusion layer is adjacent the first electrode. At least a portion of the first gas diffusion layer is at least partially impregnated by a first plastic material that bonds the portion of the first gas diffusion layer to the first electrode. A second gas diffusion layer is adjacent the second electrode. At least a portion of the second gas diffusion layer is at least partially impregnated by a second plastic material that bonds the second gas diffusion layer to the second electrode. A third plastic material is between at least one of the gas diffusion layers and the adjacent electrode for electrically isolating the first gas diffusion layer from the second gas diffusion layer.Type: ApplicationFiled: July 10, 2012Publication date: June 18, 2015Applicant: Ballard Power Systems Inc.Inventor: Thomas F. Vicino, JR.
-
Publication number: 20150140470Abstract: A microporous layer for use in a fuel cell includes a first carbon black having carboxyl groups at a concentration less than 0.1 mmol per gram of carbon, a hydrophobic additive and a hydrophilic additive. A method for producing a membrane electrode assembly includes preparing a microporous layer ink, applying the microporous layer ink to a first side of a gas diffusion substrate, sintering the gas diffusion substrate to form a gas diffusion layer having a first side with a microporous layer, and thermally bonding the first side of the gas diffusion layer to an electrode layer. The microporous layer ink includes a suspension medium, a first carbon black having carboxyl groups at a concentration less than 0.1 mmol per gram of carbon, a hydrophobic additive and a hydrophilic additive.Type: ApplicationFiled: July 19, 2012Publication date: May 21, 2015Applicant: Ballard Power Systems Inc.Inventors: Siddique Ali Khateeb Razack, Robert Mason Darling
-
Patent number: 9029031Abstract: A fuel cell stack (10) is operated with a low air utilization which is very low when the stack is providing low current density, and is operated with air utilization increasing as a function of current density above a predetermined current density.Type: GrantFiled: July 16, 2009Date of Patent: May 12, 2015Assignee: Ballard Power Systems Inc.Inventor: Robert M. Darling
-
Patent number: 9023551Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.Type: GrantFiled: January 3, 2008Date of Patent: May 5, 2015Assignee: Ballard Power Systems Inc.Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
-
Publication number: 20150099201Abstract: An exemplary manifold assembly includes a gas inlet manifold configured to introduce a gas to a fuel cell. A gas outlet manifold is configured to direct gas away from the fuel cell. A drain channel connects the inlet manifold to the outlet manifold. The drain channel is configured to carry liquid from the gas inlet manifold to the gas outlet manifold.Type: ApplicationFiled: May 24, 2012Publication date: April 9, 2015Applicant: Ballard Power Systems Inc.Inventors: Tommy Skiba, Christopher John Carnevale
-
Publication number: 20150079493Abstract: A fuel cell assembly has a plurality of fuel cell component elements extending between a pair of end plates to form a stack, and plural reactant gas manifolds mounted externally of and surrounding the stack, in mutual, close sealing relationship to prevent leakage of reactant gas in the manifolds to the environment external to the manifolds. The reactant gas manifolds are configured and positioned to maximize sealing contact with smooth surfaces of the stack and the manifolds. One embodiment is configured for an oxidant reactant manifold to overlie the region where the fuel reactant manifold engages the stack. Another embodiment further subdivides an oxidant reactant manifold to include a liquid flow channel, which liquid flow channel overlies the region where the fuel reactant manifold engages the stack.Type: ApplicationFiled: May 21, 2014Publication date: March 19, 2015Applicant: Ballard Power Systems Inc.Inventor: Robin J. Guthrie