Patents Assigned to BASF Plant Science Company GmbH
  • Publication number: 20190390218
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the order Pucciniales, preferably the family Phacopsoraceae,in plants and/or plant cells. This is achieved by increasing the expression of an RLK1protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the order Pucciniales, preferably the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an RLK1protein.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 26, 2019
    Applicant: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Tobias Mentzel
  • Patent number: 10494643
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacosporaceae in plants and/or plant cells. This is achieved by increasing the expression of an OCP3 protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an OCP3 protein.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 3, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Nadine Tresch
  • Publication number: 20190359997
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacosporaceae plants and/or plant cells. This is achieved for instance by increasing the expression of a hydrophobin protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. In the transgenic plants hydrophobin can be expressed as a fusion protein to facilitate and/or enhance expression. Furthermore, the hydrophobin protein can be expressed including a secretion signal sequence which mediates secretion of the protein into the apoplast and/or into the cuticule.
    Type: Application
    Filed: May 31, 2019
    Publication date: November 28, 2019
    Applicant: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Ralf Flachmann, Thomas Subkowski, Claus Bollschweiler
  • Patent number: 10462994
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacosporaceae in plants and/or plant cells. This is achieved by increasing the expression of an HCP7 protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an HCP7 protein.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: November 5, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Ralf Flachmann
  • Patent number: 10465204
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the order Pucciniales in plants and/or plant cells. This is achieved by increasing the expression of a MybTF protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the order Pucciniales, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding a MybTF protein.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 5, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Ralf Flachmann, Tobias Mentzel
  • Patent number: 10450582
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacosporaceae in plants and/or plant cells. This is achieved by increasing the expression of an ACD protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an ACD protein.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 22, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Ralf Flachmann
  • Patent number: 10435705
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacosporaceae in plants and/or plant cells. This is achieved by increasing the expression of an HCP6 protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an HCP6 protein.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: October 8, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Ralf Flachmann
  • Patent number: 10393719
    Abstract: The invention relates to a method and apparatus for measuring inflorescence, seed and/or seed yield phenotype of a plant. More particularly, the invention relates to a method and apparatus for high throughput analysis of inflorescence, seed and/or seed yield phenotype of a panicle-like bearing plant.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: August 27, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Pierre Lejeune, Jeroen Baert, Frederik Leyns, Joris Eeckhout
  • Publication number: 20190248843
    Abstract: The present disclosure provides modified, transgenic, or genome edited/mutated corn plants that are semi-dwarf and have one or more improved ear traits relative to a control plant, such as increase in ear area, increased single kernel weight, increased ear fresh weight, increased number of florets, and mitigated flowering delay. The modified, transgenic, or genome edited/mutated corn plants comprise a transgene encoding one or more CONSTANS (CO) or CONSTANS-like (COL) polypeptide and have a reduced expression of one or more GA20 or GA3 oxidase genes. Also provided are methods for producing the modified, transgenic, or genome edited/mutated corn plants.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 15, 2019
    Applicants: Monsanto Technology LLC, BASF Plant Science LP, BASF Plant Science Company GmbH
    Inventors: Leonardo ALVES-JUNIOR, Wesley B. BRUCE, Charles R. DIETRICH, Natalia IVLEVA, Kian KIANI, Ryan RAPP, Thomas L. SLEWINSKI
  • Patent number: 10351870
    Abstract: The invention provides isolated nucleic acid molecules which encode novel fatty acid desaturases and elongases from the organism Emiliana huxleyi. The invention also provides recombinant expression vectors containing desaturase or elongase nucleic acid molecules, host cells into which the expression vectors have been introduced, and methods for large-scale production of long chain polyunsaturated fatty acids (LCPUFAs), e.g. arachidonic acid (ARA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA).
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: July 16, 2019
    Assignee: BASF Plant Science Company GmbH
    Inventors: Jörg Bauer, Johnathan A. Napier, Olga Sayanova
  • Patent number: 10344296
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacopsoraceae plants and/or plant cells. This is achieved for instance by increasing the expression of a hydrophobin protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. In the transgenic plants hydrophobin can be expressed as a fusion protein to facilitate and/or enhance expression. Furthermore, the hydrophobin protein can be expressed including a secretion signal sequence which mediates secretion of the protein into the apoplast and/or into the cuticule.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 9, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Ralf Flachmann, Thomas Subkowski, Claus Bollschweiler
  • Patent number: 10329541
    Abstract: The present invention relates to methods for the conversion of the substrate specificity of desaturases. Specifically, the present invention pertains to a method for the conversion of the substrate specificity of a ?5 and/or ?6 desaturase to the substrate specificity of a ?4 desaturase, the method comprising: identifying regions and/or amino acid residues which control the substrate specificity of (i) the ?5 and/or ?6 desaturase and (ii) the ?4 desaturase; and replacing in the amino acid sequence of the mentioned ?5 and/or ?6 desaturase, the regions and/or amino acid residues which control the substrate specificity of the ?5 and/or ?6 desaturase, by the corresponding regions and/or amino acid residues which control the substrate specificity of the ?4 desaturase, thereby converting the substrate specificity of the ?5 and/or ?6 desaturase to the substrate specificity of the ?4 desaturase.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 25, 2019
    Assignees: BASF PLANT SCIENCE COMPANY GMBH, BIORIGINAL FOOD & SCIENCE CORP.
    Inventors: Toralf Senger, Patricia Vrinten, Ze Long Lim
  • Patent number: 10329579
    Abstract: The present invention pertains to methods, means and uses of nucleic acids and polypeptides for conferring, modifying or improving plant resistance against fungal infections. Particularly, the invention provides nucleic acids and polypeptides for conferring, modifying or improving plant resistance against fungal infections. The invention also provides vectors, cells and plants. Also, the invention provides methods for creating corresponding plant cells and plants, and for identification of agents for conferring, modifying or improving plant resistance against fungal infections.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: June 25, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Nadine Tresch, Uwe Conrath, Katharina Goellner, Caspar Langenbach
  • Patent number: 10329580
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the order Pucciniales, preferably the family Phacopsoraceae, in plants and/or plant cells. This is achieved by increasing the expression of an RLK1 protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the order Pucciniales, preferably the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an RLK1 protein.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: June 25, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Tobias Mentzel
  • Patent number: 10316304
    Abstract: The invention relates to chimeric endonucleases, comprising a endonuclease and a heterologous DNA binding domain comprising one or more Zn2C6 zinc fingers, as well as methods of targeted integration, targeted deletion or targeted mutation of polynucleotides using chimeric endonucleases.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: June 11, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Andrea Hlubek, Christian Biesgen, Hans Wolfgang Höffken
  • Patent number: 10231397
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the family Phacopsoraceae in plants and/or plant cells. This is achieved by increasing the expression of an EIN2 protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an EIN2 protein.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: March 19, 2019
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Ralf Flachmann, Tobias Mentzel
  • Patent number: 10208270
    Abstract: The present invention relates to the recombinant manufacture of polyunsaturated fatty acids. Specifically, it relates to acyltransferase polypeptides, polynucleotides encoding said acyltransferases as well as vectors, host cells, non-human transgenic organisms containing said polynucleotides. Moreover, the present invention contemplates methods for the manufacture of polyunsaturated fatty acids as well as oils obtained by such methods.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: February 19, 2019
    Assignee: BASF Plant Science Company GmbH
    Inventors: Toralf Senger, Laurent Marty, Sten Stymne, Jenny Lindberg Yilmaz, Johnathan A. Napier, Olga Sayanova, Richard Haslam, Ruiz Lopez Noemi
  • Publication number: 20180334682
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the order Pucciniales, preferably the family Phacopsoraceae, in plants and/or plant cells. This is achieved by increasing the expression of an RLK2 protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the order Pucciniales, preferably the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding an RLK2 protein.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Applicant: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Tobias Mentzel, Ralf Flachmann
  • Patent number: 10119126
    Abstract: The invention provides nucleic acid molecules which encodes a novel fatty acid desaturase, KCS, KCR and/or LACS from Thraustochytrium aureum and Sphaeroforma arctica. The invention also provides recombinant expression vectors containing the nucleic acid molecules, host cells into which the expression vectors have been introduced, and methods for large-scale production of long chain polyunsaturated fatty acids (LCPUFAs), e.g., ARA, EPA and DHA and for screening for delta-4 desaturases.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: November 6, 2018
    Assignee: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Laurent Marty, Toralf Senger
  • Publication number: 20180312866
    Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the order Pucciniales, preferably the family Phacopsoraceae, in plants and/or plant cells. This is achieved by increasing the expression of a CASAR protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the order Pucciniales, preferably the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding a CASAR protein.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 1, 2018
    Applicant: BASF PLANT SCIENCE COMPANY GMBH
    Inventors: Holger Schultheiss, Nadine Tresch, Ralf Flachmann