Patents Assigned to BASF
  • Publication number: 20160096979
    Abstract: Described is a use of a chemical-mechanical polishing (CMP) composition for polishing a substrate or layer containing one or more lll-V materials, wherein the chemical-mechanical polishing (CMP) composition comprises the following components: (A) surface modified silica particles having a negative zeta potential of ?15 mV or below at a pH in the range of from 2 to 6 (B) one or more constituents selected from the group consisting of (i) substituted and unsubstituted triazoles not having an aromatic ring annealed to the triazol ring, (ii) benzimidazole, (iii) chelating agents selected from the group consisting of amino acids with two or more carboxyl groups, aliphatic carboxylic acids, and the respective salts thereof, and (iv) homopolymers and copolymers of acrylic acid, and the respective salts thereof, (C) water (D) optionally one or more further constituents, wherein the pH of the composition is in the range of from 2 to 6.
    Type: Application
    Filed: May 6, 2014
    Publication date: April 7, 2016
    Applicant: BASF SE
    Inventors: Yongqing LAN, Peter PRZYBYLSKI, Zhenyu BAO, Julian PROELSS
  • Publication number: 20160096923
    Abstract: The invention relates to a method for producing polyamide composite materials containing silicon, comprising the copolymerisation of: a) at least one silicon compound (SV) having at least one silicon atom, said silicon atom having at least one lactamyl group of formula (A) bonded by means of the nitrogen atom thereof; b) the method also comprises copolymerisation with at least one comonomer (CM) that is selected from among ammonium salts of dicarboxylic acids, amino acids, amino acid amides and lactams. In formula (A), m represents a whole number between 1 and 11, in particular in between 2 and 9, and specifically 3, and # represents the connection to the silicon atom of the compound (SV).
    Type: Application
    Filed: May 16, 2014
    Publication date: April 7, 2016
    Applicant: BASF SE
    Inventors: Rolf-Egbert GRUETZNER, Arno LANGE, Lysann KASSNER, Andreas SEIFERT, Stefan SPANGE
  • Publication number: 20160097020
    Abstract: Aqueous solution comprising (A) in the range of from 30 to 60% by weight of a complexing agent, selected from the alkali metal salts of methylglycine diacetic acid and the alkali metal salts of glutamic acid diacetic acid, (B) in the range of from 700 ppm to 7% by weight of a polymer being selected from polyamines, the N atoms being partially or fully substituted with CH2COOH groups, partially or fully neutralized with alkali metal cations, ppm and percentages referring to the total respective aqueous solution
    Type: Application
    Filed: May 13, 2014
    Publication date: April 7, 2016
    Applicant: BASF SE
    Inventors: Markus Christian BIEL, Thomas GREINDL, Markus HARTMANN, Wolfgang STAFFEL, Marta REINOSO GARCIA
  • Patent number: 9302257
    Abstract: A process for the preparation of a catalyst for the use in a hydrocarbon conversion reaction, said catalyst containing a titanium zeolite and carbonaceous material, the catalyst containing said carbonaceous material in an amount of from 0.01 to 0.5% by weight based on the total weight of titanium zeolite contained in the catalyst, the process comprising (i) preparing a catalyst containing the titanium zeolite and (ii) depositing carbonaceous material on the catalyst according to (i) in an amount of from 0.01 to 0.5% by weight based on the total weight of titanium zeolite contained in the catalyst by contacting said catalyst, prior to using the catalyst in said hydrocarbon conversion reaction, with a fluid containing at least one hydrocarbon in an inert atmosphere, to obtain the carbonaceous material containing catalyst, wherein in (ii), the catalyst is not contacted with an oxygen containing gas.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: April 5, 2016
    Assignees: BASF SE, The Dow Chemical Company
    Inventors: Ulrich Müller, Peter Rudolf, Georg Krug, Rainer Senk
  • Patent number: 9304136
    Abstract: The present invention pertains to the field of toxicological assessments for risk stratification of chemical compounds. Specifically, it relates to a method for diagnosing increased peroxisomal proliferation. It also relates to a method of determining whether a compound is capable of inducing such peroxisomal proliferation in a subject and to a method of identifying a drug for treating increased peroxisomal proliferation. Furthermore, the present invention relates to a data collection including characteristic values of at least five metabolites, a data storage medium including data collection, and a system and a device for diagnosing increased peroxisomal proliferation. Finally, the present invention pertains to the use of a group of metabolites or means for the determination thereof for the manufacture of a diagnostic device or composition for diagnosing increased peroxisomal proliferation in a subject.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: April 5, 2016
    Assignee: BASF SE
    Inventors: Bennard van Ravenzwaay, Werner Mellert, Eric Fabian, Volker Strauss, Tilmann B. Walk, Ralf Looser, Edgar Leibold, Hennicke Kamp, Georgia Coelho Palermo Cunha, Michael Manfred Herold, Jan C. Wiemer, Alexandre Prokoudine
  • Patent number: 9302256
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: April 5, 2016
    Assignees: BASF Corporation, N.E. Chemcat Corporation, Heesung Catalysts Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael Breen, Barbara Slawski, Makoto Nagata, Yasuyuki Banno, Eunseok Kim
  • Patent number: 9303215
    Abstract: The use of a nondendrimeric hyperbranched polyester and/or a polyesteramide which comprise alkenyl-substituted succinic acid units as a demulsifier for splitting oil-water emulsions. The succinic acid is substituted by at least one alkenyl group containing from 16 to 20 carbon atoms. Particular emulsions suitable for splitting are crude oil emulsions. Also, a nondendrimeric hyperbranched polyester or a polyesteramide which comprises alkenyl-substituted succinic acid units, the alkenyl group having from 16 to 20 carbon atoms. In addition to the alkenyl-substituted succinic acid units, the nondendrimeric hyperbranched polyester contains, as further units, at least trifunctional alcohols having been alkoxylated with an average of from 3 to 12 ethylene oxide units.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: April 5, 2016
    Assignee: BASF SE
    Inventors: Bernd Bruchmann, Andreas Eichhorn, Marcus Guzmann, Wolfgang Gaschler
  • Patent number: 9302983
    Abstract: The present invention relates to gas phase phosgenation of amines for preparation of isocyanates. In the present invention, phosgene is prepared by reacting chlorine with an excess of carbon monoxide in a gas phase. The obtained phosgene-containing reaction mixture is divided into two streams by a thermal and/or a membrane separating process. The first stream is a low-carbon monoxide stream of no more than 1% by weight of carbon monoxide, based on a total weight of the first stream. The second stream is a carbon monoxide-rich stream of more than 10% by weight of carbon monoxide, based on a total weight of the second stream. The first stream is used as the phosgene-containing reactant stream in the gas phase phosgenation of amines to prepare isocyanates. The second stream can be recycled into the phosgene synthesis.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: April 5, 2016
    Assignee: BASF SE
    Inventors: Vanessa Simone Lehr, Torsten Mattke, Carsten Knoesche, Heiner Schelling, Gerhard Olbert
  • Patent number: 9302237
    Abstract: The present invention relates to an apparatus of the loop Venturi reactor type for the continuous reaction of liquids with gases, in particular for hydrogenations, oxidations or acetylations, e.g. for the preparation of toluenediamine by hydrogenation of dinitrotoluene, and a process for the continuous reaction of liquid reactants with gaseous reactants in the apparatus. In the apparatus of the invention, the diversion of an internal circulatory flow in the reactor is effected by means of a diversion pan which is arranged underneath a heat exchanger.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: April 5, 2016
    Assignee: BASF SE
    Inventors: Oliver Bey, Christian Kunkelmann, Roland Bauer, Andreas Raichle, Hartmut Riechers, Peter Zehner
  • Publication number: 20160090347
    Abstract: The present invention relates to the process for recovering acrylic acid, comprising the steps a) division of a heated mother acid stream in direction of an absorption column (201) and a dissociation column (205), b) feeding of a heated mother acid substream as runback to the dissociation column (205), c) feeding-in of at least one stripping gas stream to the dissociation column (205), d) feeding-in of a secondary component stream comprising oligomeric acrylic acid from the condensation column (201) to the dissociation column (205), e) dissociation of part of oligomeric acrylic acid in the dissociation column (205) to give monomeric acrylic acid, f) removal of secondary components comprised in the secondary component stream in the dissociation column (205), g) discharge of monomeric acrylic acid as gas mixture with introduced circulating stripping gas stream from the dissociation column (205) and h) feeding-in of the gas mixture to the condensation column (201).
    Type: Application
    Filed: September 18, 2015
    Publication date: March 31, 2016
    Applicant: BASF SE
    Inventors: Ulrich HAMMON, Thomas WALTER, Markus OTTENBACHER, Frank HUETTEN
  • Publication number: 20160090348
    Abstract: The invention relates to a process for preparing a C8-C24 alkyl(meth)acrylate by transesterification of methyl(meth)acrylate with a C8-C24 alkanol, said process comprising the steps of: (i) reacting methyl(meth)acrylate with the C8-C24 alkanol in the presence of a tin-comprising catalyst and a stabilizer in the presence of an entraining agent which forms an azeotrope with methanol, (ii) continuously distilling off the azeotrope of entraining agent and methanol wherein steps (i) and (ii) are carried out simultaneously until the C8-C24 alkanol has been substantially completely reacted, (iii) washing with an aqueous alkaline washing solution the C8-C24 alkyl (meth)acrylate-comprising product mixture obtained in steps (i) and (ii) to remove from the product mixture the tin-comprising catalyst and at least some of the stabilizer, (iv) distilling off unconverted methyl(meth)acrylate and entraining agent from the product mixture, (v) distilling off water from the product mixture wherein a product having a by-product
    Type: Application
    Filed: September 15, 2015
    Publication date: March 31, 2016
    Applicant: BASF SE
    Inventors: Andrea MISSKE, Friederike FLEISCHHAKER, Christoph FLECKENSTEIN, Martin KALLER, Ulrik STENGEL, Mathieu BLANCHOT, Ritesh NAIR
  • Publication number: 20160090463
    Abstract: The present invention relates to a process for producing porous materials, which comprises providing a mixture comprising a composition (A) comprising components suitable to form an organic gel and a solvent mixture (B), reacting the components in the composition (A) in the presence of the solvent mixture (B) to form a gel and drying of the gel, wherein the solvent mixture (B) is a mixture of at least two solvents and the solvent mixture has a Hansen solubility parameter ?H in the range of 3.0 to 5.0 MPa?1, determined using the parameter ?H of each solvent of the solvent mixture (B). The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material and in vacuum insulation panels.
    Type: Application
    Filed: May 14, 2014
    Publication date: March 31, 2016
    Applicant: BASF SE
    Inventors: Marc FRICKE, Dirk WEINRICH
  • Publication number: 20160093881
    Abstract: Spherical particles comprising (A) at least one mixed transition metal hydroxide or mixed transition metal carbonate of at least 3 different transition metals selected from nickel, cobalt, manganese, iron, chromium and vanadium, (B) at least one fluoride, oxide or hydroxide of Ba, Al, Zr or Ti, where the transition metals in transition metal hydroxide (A) or transition metal carbonate (A) are predominantly in the +2 oxidation state, where fluoride (B) or oxide (B) or hydroxide (B) is present to an extent of at least 75% in an outer shell of the spherical particles in the form of domains and is encased to an extent of at least 90% by transition metal hydroxide (A) or transition metal carbonate (A).
    Type: Application
    Filed: April 28, 2014
    Publication date: March 31, 2016
    Applicant: BASF SE
    Inventors: Simon SCHROEDLE, Martin SCHULZ-DOBRICK
  • Publication number: 20160090436
    Abstract: The present invention relates to a method for producing at least one resin, which comprises mixing at least one polyisocyanate with at least one polyepoxide, the reaction taking place in the presence of a catalyst system based on at least one metal-free Lewis base having at least one nitrogen atom, and also to resins obtainable by a method of the invention, and to the use of a resin obtainable by a method of the invention, or of a resin of the invention, for producing seals, for producing components for rotor blades, boat hulls, or vehicle body parts, or for coatings.
    Type: Application
    Filed: May 8, 2014
    Publication date: March 31, 2016
    Applicant: BASF SE
    Inventors: Frank PRISSOK, Andre KAMM
  • Publication number: 20160090541
    Abstract: A synergistic mixture comprising from 1 to 99.9% by weight of compounds having structural elements (I) in which the free valencies on the oxygen atom and on the nitrogen atom may be combined to form a five-, six- or seven-membered ring and the benzene ring may also bear substituents at one or more of the free positions, and from 0.1 to 99% by weight of sulfur-containing organic compounds with antioxidant action. This synergistic mixture is suitable as a stabilizer for stabilizing inanimate organic material, especially mineral oil products and fuels, against the action of light, oxygen and heat.
    Type: Application
    Filed: December 8, 2015
    Publication date: March 31, 2016
    Applicant: BASF SE
    Inventors: Arno LANGE, Dietmar POSSELT
  • Patent number: 9295942
    Abstract: A process for separating off acid gases from a water-comprising fluid stream wherein the water-comprising fluid stream is contacted in an absorption zone with an absorbent, producing a deacidified fluid stream and an acid gas-loaded absorbent; the deacidified fluid stream is contacted in a scrubbing zone with an aqueous scrubbing liquid, producing a deaminated, deacidified fluid stream and an amine-loaded scrubbing liquid which is cooled, producing an absorber top condensate; the loaded absorbent is passed into a desorption zone producing a regenerated absorbent and desorbed acid gases; the regenerated absorbent is returned to the absorption zone in order to form an absorbent circuit, to which the amine-loaded scrubbing liquid and the absorber top condensate are introduced; and the desorbed acid gases are conducted through an enrichment zone and the acid gases exiting at the top of the enrichment zone are cooled, producing a desorber top condensate.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: March 29, 2016
    Assignee: BASF SE
    Inventors: Torsten Katz, Karsten Bartling
  • Patent number: 9296942
    Abstract: Compositions and methods of synthesis of anionic surfactants by alkoxylation of a Guerbet alcohol (GA) having 12 to 36 carbon atoms using butylene oxide, and optionally propylene oxide and/or ethylene oxide followed by the incorporation of a terminal anionic group are described herein. The GA of the present invention is made by a facile and inexpensive method that involves high temperature base catalyzed dimerization of alcohols with 6 to 18 carbon atoms. The large hydrophobe ether surfactants of the present invention find uses in enhanced oil recovery (EOR) applications where it is used for solubilization and mobilization of oil and for environmental cleanup. Further, the hydrophobe alkoxylated GA without anionic terminal group can be used as an ultra-high molecular weight non-ionic surfactant.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 29, 2016
    Assignees: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, BASF SE
    Inventors: Upali P. Weerasooriya, Gary A. Pope, Christian Bittner, Gunter Oetter, Jack F. Tinsley, Christian Spindler, Gabriela Alvarez Jurgenson, Sophie Vogel
  • Patent number: 9296841
    Abstract: A process for preparing isobutene homo- or copolymer derivatives by (i) polymerizing isobutene or an isobutene-comprising monomer mixture in the presence of an iron halide-donor complex, an aluminum trihalide-donor complex, or an alkylaluminum halide-donor complex, (ii) reacting a resulting high-reactivity isobutene polymer with a compound which introduces a low molecular weight polar group or a substructure thereof, and (iii) in the case of reaction with a substructure, further reacting to complete the formation of the low molecular weight polar group. The homo- or copolymer derivatives include a radical of a hydrophobic polyisobutene polymer having a number-average molecular weight of 110 to 250,000 and low molecular weight polar groups including amino functions, nitro groups, hydroxyl groups, mercaptan groups, carboxylic acid or carboxylic acid derivative functions, sulfonic acid or sulfonic acid derivative functions, aldehyde functions and/or silyl groups.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: March 29, 2016
    Assignee: BASF SE
    Inventors: Hannah Maria König, Klaus Mühlbach, Helmut Mach, Ulrich Eichenauer
  • Patent number: 9295978
    Abstract: Catalysts and methods for their manufacture and use for the synthesis of dimethyl ether from syngas are disclosed. The catalysts comprise ZnO, CuO, ZrO2, alumina and one or more of boron oxide, tantalum oxide, phosphorus oxide and niobium oxide. The catalysts may also comprise ceria. The catalysts described herein are able to synthesize dimethyl ether directly from synthesis gas, including synthesis gas that is rich in carbon monoxide.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: March 29, 2016
    Assignee: BASF Corporation
    Inventors: Alexander Schäfer, Rostam Jal Madon, Thorsten von Fehren
  • Patent number: 9296714
    Abstract: The present invention relates to a micropowder, wherein the particles of the micropowder have a Dv10 value of at least 2 micrometer and the micropowder comprises mesopores which have an average pore diameter in the range of from 2 to 50 nm and comprise, based on the weight of the micropowder, at least 95 weight-% of a microporous aluminum-free zeolitic material of structure type MWW containing titanium and zinc.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: March 29, 2016
    Assignee: BASF SE
    Inventors: Andrei-Nicolae Parvulescu, Ulrich Mueller, Joaquim Henrique Teles, Bianca Seelig, Philip Kampe, Markus Weber, Robert Bayer, Karsten Seidel, Peter Resch