Abstract: A harvesting machine is disclosed along with a method of operation. The harvesting machine includes a frame having a flail cutter mounted on a first end of the frame. The flail cutter can cut the stems of growing plants. A housing surrounding a portion of the flail cutter for directing the cut plants rearward. An idler roller is positioned rearward of the flail cutter. First and second moisture removal mechanisms are positioned downstream of the cutting mechanism, and each includes a suction roll and a press roll. A moving belt forms a closed loop around the idler roller and the pair of suction and press rolls, and has a plurality of apertures formed therethrough. The moving belt forms first and second nips between each pair of suction and press rolls for squeezing moisture out of the cut stems as the stems are routed therebetween.
Abstract: A harvesting machine is disclosed along with a method of operation. The harvesting machine includes a frame having a flail cutter mounted on a first end of the frame. The flail cutter can cut the stems of growing plants. A housing surrounding a portion of the flail cutter for directing the cut plants rearward. An idler roller is positioned rearward of the flail cutter. First and second moisture removal mechanisms are positioned downstream of the cutting mechanism, and each includes a suction roll and a press roll. A moving belt forms a closed loop around the idler roller and the pair of suction and press rolls, and has a plurality of apertures formed therethrough. The moving belt forms first and second nips between each pair of suction and press rolls for squeezing moisture out of the cut stems as the stems are routed therebetween.
Abstract: A harvesting machine is disclosed along with a method of operating the harvesting machine. The harvesting machine includes a frame having a first end and a second end. A rotatable pick-up head is pivotally mounted on the first end and is capable of urging a crop into the machine. A cutting mechanism is mounted on a bottom plate of the frame for cutting the stems of the plants and forming a movable web. First and second moisture removal mechanisms are positioned downstream of the cutting mechanism, and each includes a suction roll and a press roll. A moving belt forms a closed loop around the pair of suction and press rolls, and has a plurality of apertures formed therethrough. The moving belt forms first and second nips between each pair of suction and press rolls for squeezing moisture out of said stems as the movable web is routed through the first and second nips.
Abstract: A harvesting machine along with a method of operating the harvesting machine. The harvesting machine includes a frame having a first end and a second end. A rotatable pick-up head is pivotally mounted on the first end and is capable of urging a crop into the machine. A cutting mechanism is mounted on a bottom plate for cutting the stems of the plants. A crimper mechanism is positioned downstream of the bottom plate and is capable of compacting the cut stems into a moving web. A moisture removal mechanism is positioned after the crimper mechanism to lower the moisture in the cut stems. A crop converging mechanism is located downstream of the moisture removal mechanism and reduces the width of the moving web into a ribbon. A chopper then chops the ribbon into small pieces so that they can be blown into a storage wagon for transport.
Type:
Grant
Filed:
April 16, 2018
Date of Patent:
June 30, 2020
Assignee:
Baum Machine, Inc.
Inventors:
Rodger J Baum, Charles J. Baum, William J Powel-Smith
Abstract: A harvesting machine is disclosed along with a method of operating the harvesting machine. The harvesting machine includes a frame having a first end and a second end. A rotatable pick-up head is pivotally mounted on the first end and is capable of urging a crop into the machine. A cutting mechanism is mounted on a bottom plate for cutting the stems of the plants. A crimper mechanism is positioned downstream of the bottom plate and is capable of compacting the cut stems into a moving web. A moisture removal mechanism is positioned after the crimper mechanism to lower the moisture in the cut stems. A crop converging mechanism is located downstream of the moisture removal mechanism and reduces the width of the moving web into a ribbon. A chopper then chops the ribbon into small pieces so that they can be blown into a storage wagon for transport.
Type:
Application
Filed:
April 16, 2018
Publication date:
October 17, 2019
Applicant:
Baum Machine, Inc.
Inventors:
Rodger J. Baum, Charles J. Baum, William J Powel-Smith