Patents Assigned to Baumuller Nurnberg GmbH
  • Patent number: 9075420
    Abstract: A method for monitoring the temperatures of at least two semi-conductor power switches that are arranged on a common cooling body. Temperature detection is carried out by means of a temperature model each allocated to a switch, in which switch and operating parameters as well as temperature measurement values are processed for calculating the temperature and/or a temperature difference in the relevant switch. A temperature measurement value from a temperature sensor is used as an input parameter for the temperature model, the temperature sensor being centrally positioned between at least two switches and standing in a heat conducting connection with the cooling body. A related apparatus is an electronic temperature emitting power switch arrangement, having a temperature sensor positioned centrally between the two or between two switches each, the same being coupled in a heat conducting way with the cooling body and with the output side of the calculator.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: July 7, 2015
    Assignee: Baumuller Nurnberg GmbH
    Inventor: Jinseng Jiang
  • Patent number: 8960059
    Abstract: A method for producing individual material sections, particularly sheets of paper, according to a certain format, from a web-type, for example imprinted object (object web), more particularly a web of paper or material, using a cutting means for cutting off the individual material sections from the object web and then removing said sections from the cutting means, wherein during the course of actuation of the cutting means at least one carrier is engaged with the object web, wherein following the cutting process, the carrier is displaced, together with the object web gripped by said carrier, by means of a controllable linear drive, over a displacement stroke, which is adjusted and/or varied in a controlled manner by the linear drive according to a section format that is predefined for the material section.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 24, 2015
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Andreas Baumuller, Fritz Rainer Gotz
  • Patent number: 8604745
    Abstract: A method for the identification without shaft encoder of magnetomechanical characteristic quantities of a three-phase asynchronous comprising: —constant voltage impression U1? in ? axial direction in order to generate a constant magnetic flux; —test signal voltage supply U1? in ? axial direction of the asynchronous motor, whereby the ? axial direction remains supplied with constant current; —measuring signal current measurement I1? in ? stator axial direction of the asynchronous motor; —identification of mechanical characteristic quantities of the asynchronous motor based on the test signal voltage U1? and on the measuring signal current I1?, whereby the rotor can execute deflection movements. Method can also be used for control of electrical drives. An identification apparatus for the determination of mechanical characteristic quantities of an asynchronous motor and for motor control, whereby the identified characteristic quantities can be used to determine, optimize and monitor a motor control.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 10, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Patent number: 8587250
    Abstract: A method for the identification without a shaft encoder of magnetomechanical characteristic quantities, in particular the mass moment of inertia J and the permanent magnetic flux ?PM between rotor and stator of a three-phase synchronous motor, comprising:—constant voltage supply U1d in the d flux axial direction;—test signal voltage supply U1q in the q transverse flux axial direction;—measuring signal current measuring I1q of the q transverse flux axial direction;—identification of magnetomechanical characteristic quantities of the synchronous motor on the basis of the test signal voltage U1q and of the measuring signal current I1q; whereby the rotor can execute deflection movements with pre-definable maximal amplitudes. Method use also for control of electrical drives.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 19, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Patent number: 8587239
    Abstract: Identification of electrical equivalent circuit parameters (15) of a three-phase asynchronous motor (09) without a shaft encoder. The method comprises—Assumption of a standstill position of the rotor (11);—Equidirectional test signal infeed U1?, U1? in ? and ? in the stator axis direction of the asynchronous motor (09);—Measuring of a measuring signal I1?, I1? of the ? and ? axial direction of the asynchronous motor (09); and—Identification of equivalent circuit parameters of the asynchronous motor (09) on the basis of the test signal voltages U1?, U1? and of the measuring signal currents I1?, I1?; whereby the test signal feed allows the rotor (11) to remain torque-free. Determination of equivalent circuit parameters (15) of an asynchronous motor (09) as well relates to a motor control device (35), whereby the identified equivalent circuit parameters (15) can be used for the determination, optimization and monitoring of a motor control and for control of electrical drives.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 19, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Patent number: 8587234
    Abstract: Identification without shaft encoder of electrical equivalent circuit parameters of a three-phase asynchronous motor comprising: -standstill position search of the rotor, so that the d flux axial direction of the rotor is aligned opposite the cc axial direction of the stator; -test signal voltage supply U1d in the d flux axial direction of the motor whereby the q transverse axial direction remains without current; -measuring signal current I1d of the d flux axial direction of the motor; -identification of equivalent circuit parameters of the motor based on the test signal voltage U1d and on the measuring signal current I1d in the d flux axial direction; whereby the rotor remains torque-free. The method used to control electrical drives. An identification apparatus for a synchronous motor and a motor control device comprising the apparatus, whereby identified equivalent circuit parameters can be used to determine, optimize and monitor a motor control.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 19, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Patent number: 8390234
    Abstract: A method for automated startup and/or for automated operation of controllers of an electrical drive system with vibrational mechanics with the following steps: (a) determining a preliminary value of at least one parameter; (b) determining a model of the electrical drive system by determination of initially a non-parameterized model through the recording of frequency data during operation of the drive system subject to the utilization of the preliminary value of at least one parameter and the subsequent determination of parameters of the electrical drive system based on the frequency data and subject to optimization of at least one preliminary value of at least one parameter by a numerical optimization method on the basis of the Levenberg-Marquardt algorithm and (c) parameterizing at least one controller of the electrical drive system by at least one of the determined parameters.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: March 5, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventor: Sebastian Villwock
  • Publication number: 20120111163
    Abstract: A method for producing individual material sections, particularly sheets of paper, according to a certain format, from a web-type, for example imprinted object (object web), more particularly a web of paper or material, using a cutting means for cutting off the individual material sections from the object web and then removing said sections from the cutting means, wherein during the course of actuation of the cutting means at least one carrier is engaged with the object web, wherein following the cutting process, the carrier is displaced, together with the object web gripped by said carrier, by means of a controllable linear drive, over a displacement stroke, which is adjusted and/or varied in a controlled manner by the linear drive according to a section format that is predefined for the material section.
    Type: Application
    Filed: June 8, 2010
    Publication date: May 10, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Andreas Baumuller, Fritz Rainer Gotz
  • Publication number: 20120038303
    Abstract: Identification of electrical equivalent circuit parameters (15) of a three-phase asynchronous motor (09) without a shaft encoder. The method comprises—Assumption of a standstill position of the rotor (11);—Equidirectional test signal infeed U1?, U1? in ? and ? in the stator axis direction of the asynchronous motor (09);—Measuring of a measuring signal I1?, I1? of the ? and ? axial direction of the asynchronous motor (09); and—Identification of equivalent circuit parameters of the asynchronous motor (09) on the basis of the test signal voltages U1?, U1? and of the measuring signal currents I1?, I1?; whereby the test signal feed allows the rotor (11) to remain torque-free. Determination of equivalent circuit parameters (15) of an asynchronous motor (09) as well relates to a motor control device (35), whereby the identified equivalent circuit parameters (15) can be used for the determination, optimization and monitoring of a motor control and for control of electrical drives.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Publication number: 20120038298
    Abstract: Identification without shaft encoder of electrical equivalent circuit parameters of a three-phase asynchronous motor comprising: standstill position search of the rotor, so that the d flux axial direction of the rotor is aligned opposite the ? axial direction of the stator; test signal voltage supply U1d in the d flux axial direction of the motor whereby the q transverse axial direction remains without current; measuring signal current I1d of the d flux axial direction of the motor; identification of equivalent circuit parameters of the motor based on the test signal voltage U1d and on the measuring signal current I1d in the d flux axial direction; whereby the rotor remains torque-free. The method used to control electrical drives. An identification apparatus for a synchronous motor and a motor control device comprising the apparatus, whereby identified equivalent circuit parameters can be used to determine, optimize and monitor a motor control.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Publication number: 20120038299
    Abstract: A method for the identification without a shaft encoder of magnetomechanical characteristic quantities, in particular the mass moment of inertia J and the permanent magnetic flux ?PM between rotor and stator of a three-phase synchronous motor, comprising: —constant voltage supply U1d in the d flux axial direction; —test signal voltage supply U1q in the q transverse flux axial direction; —measuring signal current measuring I1q of the q transverse flux axial direction; —identification of magnetomechanical characteristic quantities of the synchronous motor on the basis of the test signal voltage U1q and of the measuring signal current I1q; whereby the rotor can execute deflection movements with pre-definable maximal amplitudes. Method use also for control of electrical drives.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Publication number: 20120038311
    Abstract: A method for the identification without shaft encoder of magnetomechanical characteristic quantities of a three-phase asynchronous comprising: constant voltage impression U1? in ? axial direction in order to generate a constant magnetic flux; test signal voltage supply U1? in ? axial direction of the asynchronous motor, whereby the ? axial direction remains supplied with constant current; measuring signal current measurement I1? in ? stator axial direction of the asynchronous motor; identification of mechanical characteristic quantities of the asynchronous motor based on the test signal voltage U1? and on the measuring signal current I1?, whereby the rotor can execute deflection movements. Method can also be used for control of electrical drives. An identification apparatus for the determination of mechanical characteristic quantities of an asynchronous motor and for motor control, whereby the identified characteristic quantities can be used to determine, optimize and monitor a motor control.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Patent number: 8098031
    Abstract: The invention relates to a circuit arrangement for recirculating the energy produced during the braking of electric motors into a supply system. The object of the invention is to implement the feeding of the energy that can be obtained when braking electric motors to the supply system without the use of an isolating transformer. Said object is solved by a forward branch (3), comprising a rectifier (32) connected to the supply system (1). The rectifier is guided via a first intermediate circuit (33) to a first inverter (34) that is connected to the motor (2), and a backward branch (4), comprising a second intermediate circuit (42) connected to the output of the first intermediate circuit (33), wherein a second inverter (41) is connected to the second intermediate circuit, and the second inverter in turn is connected to the supply system (1) via a mains circuit (5).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: January 17, 2012
    Assignee: Baumuller Nurnberg GmbH
    Inventor: Qian Chang
  • Patent number: 7999498
    Abstract: Procedure for estimating the electrical drive speed and position of a permanent magnet rotor of a brushless electrical linear or rotating motor, especially for a drive control circuit, using multi-phase current measurements on the motor, whose measurement values, depending on the estimated position, are transformed into a rotor-related d,q reference frame i.e.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: August 16, 2011
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Fritz Rainer Götz, Viktor Barinberg, Franz Jäger
  • Publication number: 20110157944
    Abstract: Method for detecting and/or monitoring the temperatures of at least two electronic power switches, in particular semi-conductor power switches that are coupled with or arranged on a common cooling body, whereby a temperature detection and/or monitoring is carried out by means of a temperature model each allocated to a switch, in which switch and operating parameters as well as temperature measurement values are processed for calculating the temperature and/or a temperature difference in the relevant switch, whereby a temperature measurement value from a temperature sensor is used as an input parameter for the temperature model, the same being centrally positioned between at least two switches and standing in a heat conducting connection with the cooling body.
    Type: Application
    Filed: March 20, 2008
    Publication date: June 30, 2011
    Applicant: Baumuller Nurnberg GmbH
    Inventor: Jinsheng Jiang
  • Patent number: 7944158
    Abstract: A field-oriented control method for an electric drive comprising a plurality of electric motors, for implementing a tension mechanism, especially for load cable and/or gearing means, using measurements of a polyphase motor actual current. The measured values are transformed into a direct current component and a quadrature current component, based upon a magnetic rotor field or flux angle, in a rotor flux-based d,q coordinate system. The quadrature and direct current components from the actual current are subjected to a comparison with predetermined quadrature and direct current components of a current command value.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 17, 2011
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Jinsheng Jiang, Viktor Barinberg
  • Publication number: 20110083834
    Abstract: The invention relates to cooling jackets and/or heat exchangers, which are to be placed in contact with solid products that are to be cooled, especially with electrical machines with a rotor rotating inside or outside a stator, or in contact with reactors or containers. Said jackets and/or heat exchangers have an inner wall and an outer wall which form the boundary of a flow cavity that is provided with inlet and outlet means for a cooling medium and conducting means in order to form and/or limit at least one flow path for the cooling medium between the inner wall and the outer wall from the inlet means to the outlet means. According to the invention, opposing individual flat places or flat sections of the inner wall and the outer wall are in contact with one another within the confines of said walls and passages for the cooling medium remain between the contacting flat places of flat sections.
    Type: Application
    Filed: October 27, 2008
    Publication date: April 14, 2011
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Joachim Braun, Peter Lemke, Gunter Sonnauer
  • Publication number: 20110001448
    Abstract: Method for the automated startup and/or for the automated operation of controllers of an electrical drive system with vibrational mechanics with the following steps: Determination of a preliminary value of at least one parameter, Determination of a model of the electrical drive system by means of the determination of initially a non-parameterized model through the recording of frequency data during operation of the drive system subject to the utilization of the preliminary value of at least one parameter and the subsequent determination of parameters of the electrical drive system based on the frequency data and subject to the optimization of at least one preliminary value of at least one parameter by means of a numerical optimization method on the basis of the Levenberg-Marquardt algorithm and Parameterization of the plurality of or at least one controller of the electrical drive system by means of at least one of the determined parameters.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 6, 2011
    Applicant: BAUMULLER NURNBERG GMBH
    Inventor: Sebastian Villwock
  • Patent number: D634272
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 15, 2011
    Assignee: Baumuller Nurnberg GmbH
    Inventor: Michael Veeh
  • Patent number: D673910
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: January 8, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventor: Adrian Lostun