Patents Assigned to Beacon Light Products, Inc.
  • Patent number: 5955847
    Abstract: The illumination intensity of a fluorescent lamp which has cathodes and an ionizable medium separating the cathodes is controlled by a method in which the lamp is ignited once during each half-cycle of applied AC current and is thereafter extinguished during that same half-cycle. The lamp is ignited by creating and applying an ignition voltage pulse of a magnitude greater than a characteristic operating voltage of the ionizable medium between the lamp cathodes. The lamp is extinguished by reducing the voltage between the cathodes to a value less than the operating voltage, at a point prior to a zero crossing of the applied AC current half-cycle in which the lamp was illuminated. Because the extinguishing point occurs prior to the end of the applied AC current half-cycle, the illumination intensity is reduced during each half cycle. The characteristics of the ignition pulse reliably ignite the lamp, thereby allowing extinguishing control on a half-cycle by half-cycle basis.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: September 21, 1999
    Assignee: Beacon Light Products, Inc.
    Inventor: Dan E. Rothenbuhler
  • Patent number: 5861721
    Abstract: A switching module having a switching circuit which achieves a relatively smooth turn-on conduction transition characteristic and a relatively low power consumption. A controlled transition circuit conducts current to between two of its three terminals when in a fully conductive state. The transition circuit transitions from a non-conductive state to the fully conductive state over a predetermined amount of time to limit the di/dt and the interference signals generated by the di/dt. A low forward voltage conduction circuit also conducts current to the load in a conductive state and diverts current to the transition circuit when in a non-conductive state. The conduction circuit creates a second predetermined voltage across the terminals when in the conductive state which is substantially less than the first predetermined voltage to reduce the power consumption.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: January 19, 1999
    Assignee: Beacon Light Products, Inc.
    Inventor: Samuel A. Johnson
  • Patent number: 5861720
    Abstract: A power control circuit achieves a relatively smooth turn-on conduction transition characteristic and a relatively low power consumption. A controlled transition circuit conducts current to a load when in a fully conductive state. The transition circuit transitions from a non-conductive state to the fully conductive state over a predetermined amount of time to limit the di/dt and the interference signals generated by the di/dt. A low forward voltage conduction circuit also conducts current to the load in a conductive state and diverts current to the transition circuit when in a non-conductive state. The conduction circuit creates a second predetermined voltage across the terminals when in the conductive state which is substantially less than the first predetermined voltage to reduce the power consumption.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: January 19, 1999
    Assignee: Beacon Light Products, Inc.
    Inventor: Samuel A. Johnson
  • Patent number: 5818074
    Abstract: A semiconductor thyristor has multiple different semiconductor layers with regions arranged in predetermined configurations to cause a plasma of carriers to flow in an expanding volume over a finite time to reach a full conduction condition, after the thyristor is switched into a conductive condition. A smooth current or connectivity transition occurs between a nonconductive state and a conductive state, thereby eliminating the typical, more instantaneous and discontinuous on-switching conductivity transitions. The finite and increased time to reach the full conduction inherently reduces the di/dt effect created by switching the thyristor. The reduced di/dt substantially reduces the radiated and conductive interference signals generated by switching the thyristor. The growth in the size of the plasma is controlled using configurations of the semiconductor structure and doping profiles within the semiconductor layers.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: October 6, 1998
    Assignee: Beacon Light Products, Inc.
    Inventors: Richard E. Nelson, David K. Umberger
  • Patent number: 5757145
    Abstract: The illumination intensity of a fluorescent lamp is controlled in response to control signals generated at a remote location on the power supply conductors of a lamp circuit and decoding those control signals at the fluorescent lamp to control the illumination intensity. A dimming controller is connected in the lamp circuit remote from the lamp and generates first and second control signals indicative of a request to increase or decrease, respectively, the lamp illumination intensity. The control module is connected in the lamp circuit to fluorescent lamp and the control module receives the control signals. The control module continually increases and decreases the illumination intensity of the lamp in response to the first and second control signals, respectively. The illumination intensity is controlled by adjusting a time point within each half-cycle of applied power where the lamp is extinguished.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: May 26, 1998
    Assignee: Beacon Light Products, Inc.
    Inventors: Samuel A. Johnson, Dan E. Rothenbuhler
  • Patent number: 5739640
    Abstract: The present invention discloses a control module that provides improved control over the ignition of a fluorescent lamp. In one aspect, the control module determines whether the lamp is lit and, when the lamp is not lit, determines whether the power supply line voltage is insufficient to sustain the lamp in a lit state after ignition. When the power supply line voltage is determined to be insufficient, the control module waits until the power supply line voltage rises to a sufficient level before igniting the lamp.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: April 14, 1998
    Assignee: Beacon Light Products, Inc.
    Inventor: Glenn A. Noble
  • Patent number: 5736817
    Abstract: The cathodes of a fluorescent lamp are preheating and the medium between the cathodes is ignited into a plasma by heating the cathodes for a predetermined warm-up time period by conducting current from a supply power source through the cathodes for a conductive time interval, and applying a relatively high voltage starting pulse to the cathodes at the end of the conductive time interval or alternatively suppressing the high voltage starting pulse during the predetermined warm-up time period. Suppressing the high voltage starting pulse during the warm-up time period, thereby preventing erosion the thermionic coating of the cathodes due to positive ion bombardment. A controllable semiconductor switch is connected to the cathodes to control the current flow through them. The high voltage starting pulse is derived from commutating the semiconductor switch into a nonconductive state when the applied current level drops to the characteristic holding current value of the switch.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: April 7, 1998
    Assignee: Beacon Light Products, Inc.
    Inventors: Dan E. Rothenbuhler, Samuel A. Johnson, Glenn A. Noble, Jon P. Seubert
  • Patent number: 5708330
    Abstract: A voltage-boosting and current-regulating circuit delivers energy from a high voltage resonant circuit source to a fluorescent lamp. A controllable switch is connected in series with the lamp cathodes and is triggered into conduction during a predetermined conductive time interval within each half-cycle of current conducted through the plasma from the resonant circuit. A charging current which flows during the conductive time interval stores energy in the resonant circuit which is subsequently released as a boosted voltage and as increased current flow through the plasma. The boosted voltage allows higher efficiency illumination lamps to the used, and regulation of the conductive time interval achieves the optimal current conduction through the lamp.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: January 13, 1998
    Assignee: Beacon Light Products, Inc.
    Inventors: Dan E. Rothenbuhler, Samuel A. Johnson
  • Patent number: 5652481
    Abstract: A control module and method controls the operation of a fluorescent lamp in a circuit in which the lamp is connected to a ballast and energized by alternating half-cycles of power supplied from an AC power source. The fluorescent lamp has cathodes and a medium which emits light energy when energized into a plasma. A controllable switch conducts half-cycles of AC current through the cathodes and commutates into a non-conductive condition. A sensor supplies sensing signals related to an electrical condition at the cathodes. A state transition controller controls the switch. The state transition controller establishes a power-up, warm-up, ignition and fire operational states and transitions between the states in response to the electrical condition sensed and the time duration of those conditions. The lamp lights more reliably, premature failure of the ballast and cathodes is prevented due to overheating, and the lamp is controlled effectively by input signals in the form of short power interruptions.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: July 29, 1997
    Assignee: Beacon Light Products, Inc.
    Inventors: Samuel A. Johnson, Dan E. Rothenbuhler, Gerald G. Miller
  • Patent number: 5631523
    Abstract: A method of regulating an operating current conducted from a source through a fluorescent lamp involves conducting a charging current from the source through an energy storage element of a resonator circuit to store a predetermined different degree of energy in the element than is stored by conduction of the operating current, and then releasing the stored energy to regulate the operating current delivered to the plasma within the lamp. The conductive time interval during which charging current flows is adjusted to regulate the lamp current to an optimal level for the best illumination efficiency from the lamp and the longest useful lifetime of the lamp. The conductive time interval is adjusted based on the voltage across the plasma. The known negative impedance characteristics of the plasma correlate the sensed voltage to the lamp current conducted by the plasma, thereby allowing regulation of the lamp current to the desired optimal level.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: May 20, 1997
    Assignee: Beacon Light Products, Inc.
    Inventors: Dan E. Rothenbuhler, Samuel A. Johnson
  • Patent number: 5537010
    Abstract: A starter for a fluorescent lamp selectively conducts current from an AC power source through a ballast and cathodes of the lamp during one half cycle of conducted current from the AC power source. Thereafter and during the same on half cycle of current the starter ceases conducting current substantially instantaneously when the current is of a predetermined level. The resulting di/dt generates a starting voltage pulse from the ballast sufficient to ignite the plasma. The starting pulse occurs when the AC voltage across the cathodes exceeds an ignition voltage of the plasma. Preferably the starter employs a thyristor which has a predetermined holding current at least equal to the predetermined level to allow the inherent commutation of the thyristor to create the di/dt. The current conducted by the thyristor heats the cathodes prior to igniting the plasma.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: July 16, 1996
    Assignee: Beacon Light Products, Inc.
    Inventors: Samuel A. Johnson, Dan E. Rothenbuhler
  • Patent number: 5504398
    Abstract: A control module controls the illumination intensity of a fluorescent lamp. A controller controls a switch to conduct current through cathodes of the lamp, and the switch ceases conducting current when commutated into non-conduction. The switch is triggered into conduction at a predetermined extinguishing point within and prior to the end of each half-cycle of applied AC current. The switch is thereafter commutated into non-conduction at a predetermined ignition point when the applied AC current reaches a predetermined level near the zero crossing point of each half-cycle of applied AC current. The current level at commutation creates a sufficiently high di/dt effect to cause an ignition pulse of voltage from the ballast across the lamp cathodes sufficient to ignite the ionized medium into an illumination plasma. The switch extinguishes the plasma. The illumination intensity of the lamp is related to the time between the ignition point and the extinguishing point.
    Type: Grant
    Filed: March 16, 1995
    Date of Patent: April 2, 1996
    Assignee: Beacon Light Products, Inc.
    Inventor: Dan E. Rothenbuhler
  • Patent number: 5504394
    Abstract: An incandescent lamp bulb which is driven by an electronic control module (ECM) and method of manufacture characterized in that an inductor comprising a magnetic spool and a winding thereon is disposed within a screw shell base of the lamp bulb and surrounds the lamp exhaust tube therein. One end of the winding on the magnetic spool is connected to a filament wire within the screw shell base and the other end of the inductive winding is connected to an output terminal of the ECM control module. In this manner, the inductor significantly reduces the di/dt rise time of voltage and current when a TRIAC within the ECM module is driven to conduction on each one half cycle of the applied AC line voltage. This operation in turn produces a substantial reduction in radio frequency interference, both of radiation transmitted into space from the lamp bulb and by direct DC coupling back into the AC line voltage source.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: April 2, 1996
    Assignee: Beacon Light Products, Inc.
    Inventor: Samuel A. Johnson
  • Patent number: 5504395
    Abstract: An incandescent lamp bulb which is driven by an electronic control module (ECM) and method of manufacture characterized in that an inductor comprising a magnetic element and a winding thereon is disposed within a screw shell base of the lamp bulb and surrounds the lamp exhaust tube therein. One end of the winding on the magnetic element is connected to a filament wire within the screw shell base and the other end of the inductive winding is connected to an output terminal of the ECM control module. In this manner, the inductor significantly reduces the di/dt rise time of voltage and current when a triac within the ECM module is driven to conduction on each one half cycle of the applied AC line voltage. This operation in turn produces a substantial reduction in radio frequency interference, both of radiation transmitted into space from the lamp bulb and by direct DC coupling back into the AC line voltage source.
    Type: Grant
    Filed: March 4, 1994
    Date of Patent: April 2, 1996
    Assignee: Beacon Light Products, Inc.
    Inventors: Samuel A. Johnson, Patrick Roblin, Chih-Ju Hung, Veng-Chong Lau
  • Patent number: 5498987
    Abstract: A reset circuit asserts, de-asserts and re-asserts a reset signal in response to a voltage applied between first and second nodes to which the reset circuit is connected. The reset signal includes a plurality of transistor switches connected together with positive feedback to achieve latching of the reset signal in either a high or a low state. The different inherent conductivity characteristics of the transistor switches causes the switches to begin closing when the applied voltage is at a first predetermined level and causes the transistor switches to begin opening when the applied voltage achieves a second predetermined lower level. The conductivity characteristics of the transistor switches cause the first and second predetermined levels to slightly vary over temperatures in the range of approximately -50.degree. C. to 150.degree. C., allowing reliable operation over a wide range of temperatures. The reset circuit may be integrated with the circuit which it resets.
    Type: Grant
    Filed: June 20, 1994
    Date of Patent: March 12, 1996
    Assignee: Beacon Light Products, Inc.
    Inventor: Richard E. Nelson
  • Patent number: 5264761
    Abstract: A lamp control module including a housing having a receptacle therein with a transformer winding wound around the inner walls of the receptacle in being operatively driven by a programmed microprocessor. The transformer winding of the module is further operative to be inductively coupled to a second transformer winding which is located within an on-off switch knob of a wall switch panel, and the second transformer winding is further connected to the gate electrode of an AC switch. Pulses which are generated in the lamp control module and controlled by data values stored in the microprocessor therein are transformer coupled from the housing receptacle transformer winding into the knob switch transformer and then to the gate electrode of the AC switch. These pulses are operative to control the phase angle and conduction time of the Triac and in turn control the conduction time that an AC voltage is applied from an external AC voltage source to a lamp.
    Type: Grant
    Filed: September 12, 1991
    Date of Patent: November 23, 1993
    Assignee: Beacon Light Products, Inc.
    Inventor: Samuel A. Johnson
  • Patent number: 5214354
    Abstract: A new and improved electronic control module (ECM) for controlling lighting functions of an incandescent light bulb and method of manufacturing the ECM. The ECM is installed, such as by press fitting into a dielectric insulating material at the socket end of the bulb, after the high temperature bulb fabrication steps have been completed. In this manner, the solid state and associated circuitry of the electronic control module are not subjected to the high temperature processing used in lamp bulb fabrication. The electronic control module is especially well suited and adapted for integration into the lamp bulb housing and is constructed using a minimum number of reliably constructed and connected electrical components in a hybrid-type circuit module assembly which is economical to manufacture.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: May 25, 1993
    Assignee: Beacon Light Products, Inc.
    Inventor: Samuel A. Johnson
  • Patent number: 5126634
    Abstract: An incandescent light bulb or the like and process for manufacturing same wherein an electronic control module (ECM) is installed, such as by press fitting into a dielectric insulating material at the socket end of the bulb, after the high temperature bulb fabrication steps have been completed. In this manner, the solid state and associated circuitry of the electronic contorl module are not subjected to the high temperature processing used in lamp bulb fabrication. The electronic control module is especially well suited and adapted for integration into the lamp bulb housing and is constructed using a minimum number of reliably constructed and connected electrical components in a hybrid-type circuit module assembly which is economical to manufacture.
    Type: Grant
    Filed: September 25, 1990
    Date of Patent: June 30, 1992
    Assignee: Beacon Light Products, Inc.
    Inventor: Samuel A. Johnson
  • Patent number: RE35220
    Abstract: A two-terminal, alternating current power control device connected in an electrical path between a load and a remote switch, comprising a current switching device, a controlling device and a direct current power supply device. The current switching device provides a low impedance electrical path in response to the application of triggering signals thereto, and provides a high impedance electrical path in the absence of the triggering signals. A control circuit is provided for applying triggering signals to the current switching device as the proper time in the AC cycle, and is responsive to a momentary interruption in the applied AC voltage so as to effect change in the power intensity or timed duration of power delivered to the load. A remote switch in the electrical path can be the source of a momentary power interruption.
    Type: Grant
    Filed: July 8, 1993
    Date of Patent: April 30, 1996
    Assignee: Beacon Light Products, Inc.
    Inventor: Samuel A. Johnson