Abstract: A firearm laser training system of the present invention includes a target having a plurality of zones, a laser transmitter assembly for projecting a laser beam, a sensing device and a processor. The sensing device scans the target to produce target images to detect laser beam or simulated projectile impact locations. The processor receives impact location information from the sensing device and processes the received information to evaluate user performance and to display evaluation information and an image of the target including indicia corresponding to the detected impact locations.
Abstract: A firearm laser training system according to the present invention includes a laser transmitter assembly and a cartridge adapter assembly, while employing modified blank cartridges to simulate firearm operation. The modified blank cartridges each have a quantity of explosive substance sufficient only to cycle the firearm. The laser assembly is configured for attachment to a firearm barrel and front sight and emits a beam of laser light toward a training system target in response to actuation of the firearm trigger. The laser beam is generally in the form of a pulse having a duration sufficient for the system target to detect a beam impact location. The cartridge assembly is disposed within the firearm barrel to adapt the firearm for compatibility with the modified blank cartridges for simulating firearm operation.
Abstract: A removable cylinder for a revolver according to the present invention includes a plurality of cartridge chambers, each appropriately sized to receive a blank cartridge therein. The cartridge chambers are sealed at their distal end to prevent debris from a fired blank cartridge from entering the revolver barrel. The cylinder may further include passages (e.g., vent ports or grooves) in communication with the cartridge chambers to vent exhaust gases released from the blank cartridges in response to revolver actuation. The revolver may further include a laser transmitter assembly to project a laser beam toward a target in response to revolver actuation to simulate firearm operation.
Type:
Grant
Filed:
January 10, 2002
Date of Patent:
November 18, 2003
Assignee:
Beamhit, LLC
Inventors:
Mike Iten, Chris Harrison, Stephen P. Rosa, Motti Shechter
Abstract: A firearm laser training system of the present invention includes a target having a plurality of zones, a laser transmitter assembly for projecting a laser beam, a sensing device and a processor. The sensing device scans the target to produce target images to detect laser beam or simulated projectile impact locations. The processor receives impact location information from the sensing device and processes the received information to evaluate user performance and to display evaluation information and an image of the target including indicia corresponding to the detected impact locations.
Type:
Grant
Filed:
June 11, 2001
Date of Patent:
September 9, 2003
Assignee:
Beamhit, LLC
Inventors:
John Clark, Tansel Kendir, Motti Shechter
Abstract: A laser transmitter assembly of the present invention is configured for placement within a firing chamber of a user firearm and to have minimal interference with a firearm extractor during charging of the firearm. The laser assembly emits a beam of laser light toward a firearm laser training system target in response to actuation of the firearm trigger to simulate firearm operation. Further, the laser assembly is manufactured to project a concentric laser beam relative to the firearm barrel, thereby enabling use without having to align the assembly with the firearm bore sight.
Abstract: A firearm laser training system of the present invention includes a laser transmitter assembly, one or more actuable target assemblies each having a target, an interface unit and a computer system. The target assemblies raise and lower targets in accordance with control signals from the computer system. The interface unit is connected to the target assemblies and the computer system and transfers signals therebetween. In an alternative embodiment, the computer system is connected to a control unit that transmits control signals received from the computer system to the target assemblies via a distribution unit. The targets are raised by corresponding target assemblies at prescribed times for a specific time interval to indicate intended targets for the user, and are lowered in response to the beam impacting the raised targets within that interval (e.g., indicating a hit) or upon expiration of the interval without a beam impact (e.g., indicating a miss).
Type:
Grant
Filed:
May 21, 2001
Date of Patent:
June 10, 2003
Assignee:
Beamhit, LLC
Inventors:
Stephen P. Rosa, Motti Shechter, John Clark, Tansel Kendir
Abstract: A firearm laser training system according to the present invention includes a laser transmitter assembly and a cartridge adapter assembly, while employing modified blank cartridges to simulate firearm operation. The modified blank cartridges each have a quantity of explosive substance sufficient only to cycle the firearm. The laser assembly is configured for attachment to a firearm barrel and front sight and emits a beam of laser light toward a training system target in response to actuation of the firearm trigger. The laser beam is generally in the form of a pulse having a duration sufficient for the system target to detect a beam impact location. The cartridge assembly is disposed within the firearm barrel to adapt the firearm for compatibility with the modified blank cartridges for simulating firearm operation.
Abstract: A firearm training system includes a training firearm, which includes a laser transmitter module that emits a laser signal along a longitudinal centerline of the barrel of the firearm in response to a mechanical wave generated from pulling the trigger of the firearm. A laser-detecting target includes a planar array of laser light detectors capable of detecting the exact location that the laser signal hits the target. The laser signal transmitted by the training firearm is preferably a modulated laser pulse that the target can easily discriminate from noise and interference. The target is connected to a computer, which reports laser hit information and keeps track of a sequence of laser hits fired by a competitor or trainee. Computer can be linked via a communications network to similar firearm training systems to enable competition between shooters at different geographic locations.