Abstract: There is disclosed a gate driver, a driving circuit, and a liquid crystal display (LCD), wherein the gate driver comprises input terminals for inputting a CPV signal, an OE signal, and an STV signal, and output terminals for outputting a CKV signal and a CKVB signal, and a processing circuit is connected between the input terminals and the output terminals for processing the CPV signal, the OE signal, and the STV signal such that a preset time interval is present between the falling edge of the CKV signal and the rising edge of the CKVB signal during one period of the CKV signal, or a preset time interval is present between the rising edge of the CKV signal and the falling edge of the CKVB signal during one period of the CKVB signal.
Abstract: A panel-storing shelf comprises at least two support members, at least two tracks disposed around a surface of each of the at least two support members, respectively, to rotate about respective support member, and at least two brackets disposed on each of the at least two tracks, respectively, and at the same level, to hold the panel and rotate along with the track.
Abstract: Embodiments of the present invention disclose a sensor and a method for manufacturing the same, the sensor comprising a plurality of sensing units arranged in array, each of which comprises a thin film transistor device and a photodiode sensor device and the photodiode sensor device comprising: a receiving electrode connected with a drain of the thin film transistor device, a photodiode located on the receiving electrode and covering the thin film transistor device, a transparent electrode on the photodiode and a biasing line connected with the transparent electrode.
Abstract: Embodiments of the invention provide a frame sealant and a process for preparing the same, as well as use thereof. The frame sealant comprises, by weight, 25%-30% acrylic resins, 25%-30% oligomers as shown in Structure Formula I, 10%-15% organic powders, 10%-15% inorganic powders, 0%-10% epoxy resins, 10%-15% heat curing agents, 0.1%-1% photoinitiators, and 0.1%-1% coupling agents, wherein, in Structure Formula I, n indicates an integer of 10-20.
Abstract: Embodiments of the present invention disclose a backlight and a display device, to reduce the number of LEDs in a backlight, save costs, while avoiding dark areas appearing on the screen, so as to ensure display effect. The backlight comprises a first light guide plate and at least one light-emitting diode assembly, and the light-emitting diode assembly is located on one side of the first light guide plate. The light-emitting diode assembly comprises a second light guide plate, at least one light-emitting diode and a reflective film, wherein the at least one light-emitting diode is located on at least one side of the second light guide plate, and the reflective film is located on at least one side of the second light guide plate.
Abstract: The invention provides a liquid crystal alignment film, a method for preparing the same and a liquid crystal display device comprising the same. The alignment film comprises a polyimide obtained by reacting a compound as shown in Formula 2 or Formula 3 with an aromatic diamine as shown in Formula 1, wherein the R1, R2, R3, R4, R5, R6, R7, R1?, R2?, R3?, R4?, R5?, R6?, R7?, or R8? is H, an alkyl, an aralkyl or a haloalkyl, and the Ar is an aryl. The liquid crystal alignment film has a tactic spatial configuration, decreases the ?-? attractive interaction between the polyimide backbones, allows the directional and homogenous alignment of the liquid crystal molecules on the surface of the polyimide, and thereby increases the contrast of the liquid crystal display.
Abstract: Embodiments of the present invention provide an array substrate and a method for manufacturing the same, and a display device. The method comprises: depositing a first transparent electrode layer on a base substrate, coating first photoresist on the transparent electrode layer, and performing exposure and development on the first photoresist to retain the first photoresist at a location where a first transparent electrode is to be formed, so that a first photoresist pattern is formed; etching the first transparent electrode layer with the first photoresist pattern, so as to form the first transparent electrode; and depositing a second transparent electrode layer on the base substrate after the etching, and then performing a photoresist lifting-off process on the first photoresist pattern to remove a part of the second transparent electrode layer on the first photoresist pattern so that a second transparent electrode is formed.
Abstract: Embodiments of the present invention relate to a liquid crystal panel and a fabricating method thereof and a display. The liquid crystal panel comprises: an array substrate and a color filter substrate bonded by a first sealant, with a region surrounded by the first sealant between the array substrate and the color filter substrate forming a liquid crystal panel display region filled with liquid crystal. In addition, the liquid crystal panel further comprises: a liquid crystal buffer region, located at the outer side of the first sealant; a liquid crystal channel, through which the liquid crystal buffer region and the liquid crystal panel display region are connected; and a covering layer, covering at least a position where the liquid crystal channel connects with the liquid crystal panel display region.
Abstract: A light emitting diode package unit, a method for manufacturing the same and a backlight are disclosed. The light emitting diode package unit comprising a LED chip and a light uniformization structure formed above the LED chip in the direction of exiting light.
Abstract: According to embodiments of the invention, an in-cell capacitive contact panel and a manufacturing method thereof are provided. The in-cell capacitive touch panel comprises an array substrate. The array substrate comprises a display pixel structure and a touch circuit, and the touch circuit comprises a sensing unit and an amplifying unit connected with each other. The sensing unit is connected to a gate line in the display pixel structure. A switch-on voltage is provided by the gate line in the display pixel structure to the sensing unit, a voltage is generated in the sensing unit after the sensing unit is switched on, the voltage generated in the sensing unit is changed by a touch operation, the amplifying unit amplifies the voltage change in the sensing unit and outputs the amplified voltage change.
Abstract: Embodiments of the invention provide a liquid crystal panel, a display device, and a process for manufacturing the liquid crystal panel. The liquid crystal panel includes cell-assembled array substrate and colored substrate, and a liquid crystal layer between the array substrate and the colored substrate, wherein the liquid crystal layer includes a dual frequency liquid crystal and a polymer network anchoring the dual frequency liquid crystal, wherein the polymer network is formed by polymerization of liquid crystalline ultraviolet polymerizable monomers.
Abstract: An oxide semiconductor thin film transistor, a manufacturing method and a display device thereof are disclosed. An oxide semiconductor thin film transistor comprises a gate insulating layer (22), an oxide semiconductor layer (24) and a blocking layer (25), wherein a first transition layer (23) is formed between the gate insulating layer (22) and the oxide semiconductor layer (24), the oxygen content of the first transition layer (23) is higher than the oxygen content of the oxide semiconductor layer (24). The oxide semiconductor thin film transistor enhances the interface characteristic and the lattice matching between the oxide semiconductor layer (24) and the blocking layer (25) to improve the stability of the thin film transistor better.
Abstract: The present invention relates to device for driving liquid crystal display (LCD) and method for driving the same. The device for driving LCD comprises a voltage input module for receiving Gamma reference voltage; a voltage generation module connected to said voltage input module, for generating pixel driving voltage of a corresponding color with one resistor-chain, according to the Gamma reference voltage and the color of pixel being driven; and a voltage output module connected to said voltage generation module, for transmitting the pixel driving voltage of said corresponding color to a liquid crystal panel.
Abstract: A reset circuit for Gate Driver on Array, an array substrate and a display is used for increasing reliability and long-term stability of a GOA circuit and thus improving performance of the GOA circuit. The GOA reset circuit includes a first electronic switch circuit (301) connected to an input terminal of a GOA unit of the Gate Driver on Array (INPUT); and a second electronic switch circuit connected to an output terminal of the GOA unit (OUTPUT), wherein the first electronic switch circuit (301) is connected to a low level signal terminal and is switched on to connect the low level signal terminal to a reset terminal of the GOA unit (RESET) when the input terminal of the GOA unit (INPUT) is at a high level; and the second electronic switch circuit (302) is connected to a high level signal terminal and is switched on to connect the high level signal terminal to the reset terminal of the GOA unit (RESET) when the output terminal of the GOA unit (OUTPUT) is at a high level.
Abstract: A method of manufacturing a TFT array substrate and a TFT array substrate and a display device are provided. During a pattern of a gate layer (2), a pattern of the gate insulating layer (3) and a pattern of the active layer are made, a gate layer (2) material, a gate insulating layer (3) material and an active layer material are deposited successively. The gate layer (2), the gate insulating layer (3) and the active layer are made through one patterning process. At least one mask process is saved and the process complexity is reduced.
Abstract: The embodiments of the present disclosure provide a WWAN test method and a test system related to the communication field, which is suitable for the product research and development stage and can derive a quantitative data relationship between a NFS test result and an OTA test result. The WWAN test method comprises: measuring a power value of noises, denoted by D(NFS), received by an antenna of a terminal to be tested in a NFS test manner; measuring a power attenuation value, denoted by D-sense, of a path from a WWAN module to the antenna of the terminal; obtaining an antenna efficiency value, denoted by AE, of the terminal; and obtaining a TIS value of an OTA test result by TIS=D(NFS)+D-sense?AE. The embodiments of the present disclosure can be used in the NFS test.
Abstract: An optical testing method and system for 3D display products are disclosed, the method comprising: the 3D display product to be tested displaying white light and/or black light, a left eye lens and a right eye lens receiving white light signals and/or black light signals of left eye pixels and right eye pixels respectively and transmitting them to a data processor for processing, obtaining test results for brightness difference; the 3D display product to be tested displaying primary colors, the left eye lens and the right eye lens receiving light signals of the left eye pixels and the right eye pixels respectively and transmitting them to the data processor for processing, and obtaining test results for color difference.
Abstract: An apparatus for spraying spacers with an alignment liquid, including a container for transporting the alignment liquid mixed with the spacers therein and a plurality of nozzles provided on a bottom of the container. The alignment liquid with spacers mixed therein is sprayed through the plurality of nozzles under a same inner pressure, thereby forming an alignment layer on the substrate supported.