Patents Assigned to Berkeley Lights, Inc.
-
Patent number: 11203018Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.Type: GrantFiled: October 15, 2018Date of Patent: December 21, 2021Assignee: Berkeley Lights, Inc.Inventors: Troy A. Lionberger, Matthew E. Fowler, Phillip J. M. Elms, Kevin D. Loutherback, Randall D. Lowe, Jr., Jian Gong, J. Tanner Nevill, Gang F. Wang, Gregory G. Lavieu, John A. Tenney, Aathavan Karunakaran, Anupam Singhal, I-Jong Lin
-
Patent number: 11192108Abstract: A microfluidic device can comprise a plurality of interconnected microfluidic elements. A plurality of actuators can be positioned abutting, immediately adjacent to, and/or attached to deformable surfaces of the microfluidic elements. The actuators can be selectively actuated and de-actuated to create directed flows of a fluidic medium in the microfluidic (or nanofluidic) device. Further, the actuators can be selectively actuated and de-actuated to create localized flows of a fluidic medium in the microfluidic device to move reagents and/or micro-objects in the microfluidic device.Type: GrantFiled: July 12, 2018Date of Patent: December 7, 2021Assignee: Berkeley Lights, Inc.Inventors: Keith J. Breinlinger, Andrew W. McFarland, J. Tanner Nevill
-
Patent number: 11192107Abstract: A microfluidic apparatus can comprise a dielectrophoresis (DEP) configured section for holding a first liquid medium and selectively inducing net DEP forces in the first liquid medium. The microfluidic apparatus can also comprise an electrowetting (EW) configured section for holding a second liquid medium on an electrowetting surface and selectively changing an effective wetting property of the electrowetting surface. The DEP configured section can be utilized to select and move a micro-object in the first liquid medium. The EW configured section can be utilized to pull a droplet of the first liquid medium into the second liquid medium.Type: GrantFiled: April 25, 2015Date of Patent: December 7, 2021Assignee: Berkeley Lights, Inc.Inventors: Igor Y. Khandros, J. Tanner Nevill, Steven W. Short, Ming C. Wu
-
Patent number: 11170200Abstract: Methods are provided for the automated detection and/or counting of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.Type: GrantFiled: May 31, 2019Date of Patent: November 9, 2021Assignee: Berkeley Lights, Inc.Inventors: Hansohl E. Kim, John A. Tenney, Joshua F. Slocum
-
Publication number: 20210291171Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.Type: ApplicationFiled: January 29, 2021Publication date: September 23, 2021Applicant: Berkeley Lights, Inc.Inventors: Randall D. Lowe, JR., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
-
Publication number: 20210270817Abstract: Disclosed herein is a method for assaying binding affinity between a first molecule and a second molecule in a micro-fluidic device.Type: ApplicationFiled: March 11, 2021Publication date: September 2, 2021Applicant: Berkeley Lights, Inc.Inventors: Paul M. Lebel, Troy A. Lionberger, Kevin T. Chapman
-
Patent number: 11103870Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.Type: GrantFiled: January 28, 2019Date of Patent: August 31, 2021Assignee: Berkeley Lights, Inc.Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L. S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
-
Patent number: 11097271Abstract: A microfluidic device can comprise a plurality of interconnected microfluidic elements. A plurality of actuators can be positioned abutting, immediately adjacent to, and/or attached to deformable surfaces of the microfluidic elements. The actuators can be selectively actuated and de-actuated to create directed flows of a fluidic medium in the microfluidic (or nanofluidic) device. Further, the actuators can be selectively actuated and de-actuated to create localized flows of a fluidic medium in the microfluidic device to move reagents and/or micro-objects in the microfluidic device.Type: GrantFiled: August 7, 2018Date of Patent: August 24, 2021Assignee: Berkeley Lights, IncInventors: Keith J. Breinlinger, Andrew W. McFarland, J. Tanner Nevill
-
Patent number: 11007520Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to provide improved or altered performance with biomaterials.Type: GrantFiled: November 20, 2018Date of Patent: May 18, 2021Assignee: Berkeley Lights, Inc.Inventors: Randall D. Lowe, Jr., Alexander J. Mastroianni, Mark P. White, Gregory G. Lavieu, Kristin G. Beaumont
-
Publication number: 20210129142Abstract: A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.Type: ApplicationFiled: October 5, 2020Publication date: May 6, 2021Applicant: Berkeley Lights, Inc.Inventors: Eric D. Hobbs, Justin K. Valley
-
Patent number: 10973227Abstract: A method of processing and storing biological cells includes introducing a flowable medium into a microfluidic device, the flowable medium including biological cells; sequestering one or more biological cells from the flowable medium in one or more isolation regions of the microfluidic device; and freezing the microfluidic device including the one or more biological cells sequestered therein.Type: GrantFiled: April 22, 2016Date of Patent: April 13, 2021Assignee: Berkeley Lights, Inc.Inventors: Mark P. White, Kevin T. Chapman, Andrew W. McFarland, Eric D. Hobbs, Randall D. Lowe, Jr.
-
Publication number: 20210087252Abstract: This disclosure relates to the production and use of an isolated, purified and/or recombinant T cell receptor (TCR) that specifically binds to a mutant IDH1 protein, or a fragment thereof, wherein the mutant IDH1 protein or fragment thereof comprises an R132H mutation.Type: ApplicationFiled: August 7, 2020Publication date: March 25, 2021Applicants: Berkeley Lights, Inc., The Regents of the University of CaliforniaInventors: Hideho Okada, Duane Smith, Payal Watchmaker, Yelena Bronevetsky, Ryosuke Naka, Guido K. Stadler, Xiaohua Wang, Kevin T. Chapman
-
Publication number: 20200400669Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.Type: ApplicationFiled: June 4, 2020Publication date: December 24, 2020Applicant: Berkeley Lights, Inc.Inventors: Kevin T. Chapman, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, JR., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang, George L. Fox, Peggy A. Radel
-
Publication number: 20200392567Abstract: Disclosed herein are methods for performing assays, including general functional assays, on a biological cell. The methods can include contacting a biological cell with a test agent for a period of time; lysing the biological cell while the biological cell is disposed within a sequestration pen located within an enclosure of a microfluidic device; and allowing RNA molecules released from the lysed biological cell to be captured by capture oligonucleotides linked to a capture object disposed within the sequestration pen of the microfluidic device. Each capture oligonucleotide can include a priming sequence that binds a primer, and a capture sequence. Each cDNA transcribed from a captured RNA can have an oligonucleotide sequence complementary to the captured RNA molecule, with the complementary oligonucleotide sequence being covalently linked to one of the capture oligonucleotides of the capture object.Type: ApplicationFiled: June 24, 2020Publication date: December 17, 2020Applicant: Berkeley Lights, Inc.Inventors: Hayley M. Bennett, Ravi K. Ramenani, Debjit Ray, Thomas M. Vetterli, Annamaria Mocciaro, Magali Soumillon, Mark P. White, Troy A. Lionberger, Kevin T. Chapman, Po-Yuan Tung
-
Patent number: 10832404Abstract: Methods are provided for the automated detection of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.Type: GrantFiled: June 5, 2018Date of Patent: November 10, 2020Assignee: Berkeley Lights, Inc.Inventors: Fenglei Du, Paul M. Lundquist, John A. Tenney, Troy A. Lionberger
-
Patent number: 10829728Abstract: Apparatuses and methods are described for the use of optically driven bubble, convective and displacing fluidic flow to provide motive force in microfluidic devices. Alternative motive modalities are useful to selectively dislodge and displace micro-objects, including biological cells, from a variety of locations within the enclosure of a microfluidic device.Type: GrantFiled: June 15, 2018Date of Patent: November 10, 2020Assignee: Berkeley Lights, Inc.Inventors: Volker L. S. Kurz, Troy A. Lionberger, Eric K. Sackmann, Kai W. Szeto, Paul M. Lebel, Brandon R. Bruhn, Keith J. Breinlinger, Eric D. Hobbs, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
-
Patent number: 10821439Abstract: A microfluidic apparatus is provided having one or more sequestration pens configured to isolate one or more target micro-objects by changing the orientation of the microfluidic apparatus with respect to a globally active force, such as gravity. Methods of selectively directing the movements of micro-objects in such a microfluidic apparatus using gravitational forces are also provided. The micro-objects can be biological micro-objects, such as cells, or inanimate micro-objects, such as beads.Type: GrantFiled: July 26, 2017Date of Patent: November 3, 2020Assignee: Berkeley Lights, Inc.Inventors: Keith J. Breinlinger, Eric D. Hobbs, Daniele Malleo, J. Tanner Nevill, Mark P. White
-
Patent number: 10799865Abstract: Microfluidic devices having an electrowetting configuration and an optimized droplet actuation surface are provided. The devices include a conductive substrate having a dielectric layer, a hydrophobic layer covalently bonded to the dielectric layer, and a first electrode electrically coupled to the dielectric layer and configured to be connected to a voltage source. The microfluidic devices also include a second electrode, optionally included in a cover, configured to be connected to the voltage source. The hydrophobic layer features self-associating molecules covalently bonded to a surface of the dielectric layer in a manner that produces a densely-packed monolayer that resists intercalation and or penetration by polar molecules or species.Type: GrantFiled: October 27, 2016Date of Patent: October 13, 2020Assignee: Berkeley Lights, Inc.Inventors: Randall D. Lowe, Jr., Shao Ning Pei, Jian Gong, Alexander J. Mastroianni, Jason M. McEwen, Justin K. Valley
-
Patent number: 10800652Abstract: A group of micro-objects in a holding pen in a micro-fluidic device can be selected and moved to a staging area, from which the micro-objects can be exported from the micro-fluidic device. The micro-fluidic device can have a plurality of holding pens, and each holding pen can isolate micro-objects located in the holding pen from micro-objects located in the other holding pens or elsewhere in the micro-fluidic device. The selected group of micro-objects can comprise one or more biological cells, such as a clonal population of cells. Embodiments of the invention can thus select a particular group of clonal cells in a micro-fluidic device, move the clonal cells to a staging area, and export the clonal cells from the micro-fluidic device while maintaining the clonal nature of the exported group.Type: GrantFiled: September 6, 2018Date of Patent: October 13, 2020Assignee: Berkeley Lights, Inc.Inventors: Keith J. Breinlinger, Daniele Malleo, Gaetan L. Mathieu, J. Tanner Nevill, Alexander H. Slocum, Mark P. White
-
Patent number: 10792658Abstract: A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.Type: GrantFiled: July 11, 2019Date of Patent: October 6, 2020Assignee: Berkeley Lights, Inc.Inventors: Eric D. Hobbs, Justin K. Valley