Patents Assigned to Beyond Limits, Inc.
  • Patent number: 12055673
    Abstract: An architecture for predicting and modeling geological characteristics of a reservoir includes one or more neural networks, a static modeling module, a dynamic modeling module, and a fuzzy inference engine to provide recommendations for drilling a wellbore. The neural networks receive log data for coordinates along a well trajectory, and determine a geophysical relationship for a property of a subterranean formation as a function of distance vectors between the coordinates along the well trajectory and one or more sets of randomly generated coordinates. The static modeling module generates three-dimensional static models of a volume of interest based on predicted properties of formations residing therein from the neural networks.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: August 6, 2024
    Assignee: Beyond Limits, Inc.
    Inventors: Shahram Farhadi Nia, Zackary H Nolan, Azarang Golmohammadizangabad
  • Patent number: 11579332
    Abstract: Implementations described and claimed herein provide systems and methods for developing a reservoir. In one implementation, a static model of the reservoir is received. The static model has one or more clusters of rock types. A reservoir graph is generated from the static model. The reservoir graph represents each of the one or more clusters as a vertex. A graph connectivity of the reservoir graph is defined through a nodal connectivity of neighboring vertices. Pressure values are propagated across three-dimensional space of the reservoir graph using the connectivity. A dynamic model of the reservoir is generated using the pressure values and fluid saturation values.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: February 14, 2023
    Assignee: Beyond Limits, Inc.
    Inventor: Shahram Farhadi Nia
  • Patent number: 11454738
    Abstract: Implementations described and claimed herein provide systems and methods for developing a reservoir. In one implementation, a reservoir model is received. The reservoir model includes a static model and a dynamic model. The static model includes one or more clusters of a three-dimensional volume of the reservoir and an uncertainty quantification generated using a neural network. The dynamic model includes pressure values and fluid saturation values propagated across the three-dimensional volume through a nodal connectivity of neighboring clusters. A set of input features is generated from the static model and the dynamic model. The set of input features is related to a drilling attractiveness of a target region of the reservoir using a set of rules executed by a fuzzy inference engine. A quantification of the drilling attractiveness is generated. A recommendation for drilling in the reservoir is output based on the quantification of the drilling attractiveness.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: September 27, 2022
    Assignee: Beyond Limits, Inc.
    Inventors: Zackary H. Nolan, Shahram Farhadi Nia
  • Patent number: 11422284
    Abstract: An architecture for predicting and modeling geological characteristics of a reservoir includes one or more neural networks, a static modeling module, a dynamic modeling module, and a fuzzy inference engine to provide recommendations for drilling a wellbore. The neural networks receive log data for coordinates along a well trajectory, and determine a geophysical relationship for a property of a subterranean formation as a function of distance vectors between the coordinates along the well trajectory and one or more sets of randomly generated coordinates. The static modeling module generates three-dimensional static models of a volume of interest based on predicted properties of formations residing therein from the neural networks.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 23, 2022
    Assignee: Beyond Limits, Inc.
    Inventors: Shahram Farhadi Nia, Zackary H. Nolan, Azarang Golmohammadizangabad
  • Patent number: 11143789
    Abstract: Implementations described and claimed herein provide systems and methods for developing a reservoir. In one implementation, observed data points in a volume along a well trajectory and well logs corresponding to observed data points are received at a neural network. Feature vectors are generated using the neural network. The feature vectors are defined based on a distance between each of the observed data points and randomly generated points in the volume. A 3D populated log is generated by propagating well log values of the feature vectors across the volume. Uncertainty is quantified by generating a plurality of realizations including the 3D populated log. Each of the realizations is different and equally probable. core values are generated from the realizations, and a static model of the reservoir is generated by clustering the volume into one or more clusters of rock types based on the core values.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: October 12, 2021
    Assignee: Beyond Limits, Inc.
    Inventors: Azarang Golmohammadizangabad, Shahram Farhadi Nia
  • Patent number: 6773411
    Abstract: A flexible knee brace that provides support to the knee, meniscus, ligaments, and muscles of the leg, and assists with the rehabilitation of the knee when injured, pre-surgery, and post-surgery. The knee brace is made of an elasticized sleeve worn over the leg and spanning the knee. The sleeve has a plurality of channels running vertically on each side of the patella, nearly the full length of the sleeve. The channels house flexible elongated strips that may be removed or added to adjust the bending resistance of the knee brace. The knee brace is secured in place by an elastic strap sewn onto the sleeve and running laterally above the patella.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: August 10, 2004
    Assignee: Innovations Beyond Limitations, Inc.
    Inventor: Lazaro Alvarez