Abstract: The present disclosure provides an image sensor panel (ISP) and a method for fabricating the image sensor panel (ISP). In one aspect, the method includes forming a well in an assembly, forming a bottom electrode in the well, forming a photosensitive layer in the well, and forming a top electrode over the photosensitive layer.
Abstract: The present disclosure provides an optical-capacitive sensor panel device. In one aspect, the panel device includes a transparent substrate having a first surface; an optical sensor array formed on the first surface of the transparent substrate, the optical sensor array including a plurality of photosensitive pixels spaced apart from each other and arranged on the first surface to form a lattice structure; a plurality of row electrodes formed on the optical sensor array and electrically coupled to a first group of the photosensitive pixels; a plurality of column electrodes formed on the optical sensor array crossing the row electrodes and electrically coupled to a second group of the photosensitive pixels; and an insulating layer formed between the row electrodes and the column electrodes.
Abstract: The present disclosure provides an image sensor panel and a method for capturing graphical information using the image sensor panel. In one aspect, the image sensor panel includes a substrate and a sensor array on the substrate, the sensor array including a plurality of photosensitive pixels. The substrate includes a first region defined by the sensor array and a second region other than the first region. The second region is optically transparent and has an area greater than that of the first region.
Abstract: In one aspect, the present disclosure provides an electronic device having a light source, a two-dimensional photosensor, the photosensor and the light source being stacked on top of each other, and a non-transitory computer readable memory. In one example, the mobile electronic device is configured to: capture two or more frames using the photosensor while light is emitted from the light source, identify common features in neighboring frames of said two or more frames, combine said two or more frames into an image based on the common features, such that the common features are spatially collocated in the image, and record the image to the memory.
Type:
Grant
Filed:
October 1, 2018
Date of Patent:
October 8, 2019
Assignee:
Bidirectional Display, Inc.
Inventors:
Zachary Michael Thomas, Hsuan-Yeh Chang
Abstract: The present disclosure provides an image sensor panel and a method for capturing graphical information using the image sensor panel. In one aspect, the image sensor panel includes a substrate and a sensor array on the substrate, the sensor array including a plurality of photosensitive pixels. The substrate includes a first region defined by the sensor array and a second region other than the first region. The second region is optically transparent and has an area greater than that of the first region.
Abstract: In one aspect, the present disclosure provides a system and a method for constructing a document image from snapshots of portions of a subject document taken by a two-dimensional image sensor panel. In another aspect, the present disclosure provides a mobile electronic device comprising: an image sensor panel; a non-transitory computer readable memory; and a processor configured to: capture a sequence of frames from the image sensor panel, identify corresponding features in said sequence of frames, combine said sequence of frames into a resultant image such that the corresponding features are spatially collocated in the resultant image, and record the resultant image to the memory.
Type:
Grant
Filed:
November 10, 2016
Date of Patent:
October 2, 2018
Assignee:
Bidirectional Display, Inc.
Inventors:
Zachary Michael Thomas, Hsuan-Yeh Chang
Abstract: The present disclosure provides an optical-capacitive sensor panel device. In one aspect, the panel device includes a transparent substrate having a first surface; an optical sensor array formed on the first surface of the transparent substrate, the optical sensor array including a plurality of photosensitive pixels spaced apart from each other and arranged on the first surface to form a lattice structure; a plurality of row electrodes formed on the optical sensor array and electrically coupled to a first group of the photosensitive pixels; a plurality of column electrodes formed on the optical sensor array crossing the row electrodes and electrically coupled to a second group of the photosensitive pixels; and an insulating layer formed between the row electrodes and the column electrodes.
Abstract: The present disclosure provides an image sensor panel and a method for capturing graphical information using the image sensor panel. In one aspect, the image sensor panel includes a substrate and a sensor array on the substrate, the sensor array including a plurality of photosensitive pixels. The substrate includes a first region defined by the sensor array and a second region other than the first region. The second region is optically transparent and has an area greater than that of the first region.