Patents Assigned to BIOLOGIQ, INC.
  • Patent number: 11926929
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 12, 2024
    Assignee: BIOLOGIQ, INC
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 11926940
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 12, 2024
    Assignee: BIOLOGIQ, INC.
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L. Kramer, Steven P. Sherman
  • Patent number: 11879058
    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec?1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 23, 2024
    Assignee: BIOLOGIQ, INC
    Inventors: Donald R. Allen, Leopoldo V. Cancio, Fehime Vatansever Ozaltun, Bradford LaPray, Bruno R. Pereira, Kenneth L Kramer, Steven P. Sherman
  • Patent number: 11840623
    Abstract: Described herein are methods for rendering biodegradable a plastic material that is not itself biodegradable, by blending the plastic material with a carbohydrate-based polymeric material that is formed from one or more starches, and a plasticizer (e.g., glycerin). The carbohydrate-based polymeric material is less crystalline than the starting starch materials, e.g., being substantially amorphous, and having a crystallinity of no more than 20%. Third party testing shows blends of such materials render the entire blend biodegradable, believed to be due to the low crystalline substantially amorphous carbohydrate-based polymeric material breaking the hygroscopic barrier associated with the non-biodegradable plastic material, so that when blended together, both the plastic material and the carbohydrate-based polymeric material are biodegradable.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: December 12, 2023
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Wenji Quan, Donald R. Allen
  • Patent number: 11807741
    Abstract: Described herein are strength characteristics and biodegradation of articles produced using one or more “green” sustainable polymers and one or more carbohydrate-based polymers. A compatibilizer can optionally be included in the article. In some cases, the article can include a film, a bag, a bottle, a cap or lid therefore, a sheet, a box or other container, a plate, a cup, utensils, or the like.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: November 7, 2023
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Wenji Quan, Donald R. Allen
  • Patent number: 11674014
    Abstract: Described herein are blends of starch or starch-based materials with polymeric materials, where the starch or starch-based material is intimately blended with the polymeric material, so as to exhibit very small particles sizes (e.g., less than 2 ?m, or less than 1 ?m) for the starch or starch-based material in the matrix of the polymeric material. Such intimate dispersion of very small particles provides for far more of the particles dispersed more evenly throughout the matrix of the polymeric material, which may enhance various performance characteristics of the blended composite material. Methods of producing articles from such blends exhibiting such small particles and excellent dispersion are also disclosed.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: June 13, 2023
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Donald R. Allen, Wenji Quan, Bruno R. Pereira, Shigenobu Miura
  • Patent number: 11674018
    Abstract: Described herein are blends of carbohydrate-based polymeric materials with other polymeric materials, where the carbohydrate-based polymeric material is intimately blended with the other polymeric material, so as to exhibit very small particles sizes (e.g., less than 2 ?m, or less than 1 ?m) for the carbohydrate-based polymeric material in the matrix of the other polymeric material. Such intimate dispersion of very small particles provides for far more of the particles dispersed more evenly throughout the matrix of the other polymeric material, which may enhance various performance characteristics of the blended composite material, and provide for more consistent achievement of such characteristics, from batch to batch. Methods of producing articles from such blends exhibiting such small particles and excellent dispersion are also disclosed. While suitable for use in a wide variety of fields, examples may include for the coating of paper cups, and as a capsule material for sustained release fertilizer.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: June 13, 2023
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Donald R. Allen, Wenji Quan, Bruno R. Pereira, Shigenobu Miura
  • Patent number: 11359088
    Abstract: Composite blends of PBAT (or another similar polyester) with PLA and a carbohydrate-based polymeric material. While PLA is not compostable under home composting conditions (e.g., temperature of 28° C.) on its own, when blended in the manner described herein, it is compositable under such conditions. The addition of the PLA increases the rigidity of the composite blend, as PBAT on its own is so flexible as to be problematic for use in carryout bags, and the like. An exemplary blend may include 30-55% by weight of the carbohydrate-based polymeric material, up to 20%, or up to 15% by weight of PLA, with the balance of polymeric content being PBAT (e.g., 30-60% PBAT). Other components (e.g., an inorganic filler, such as calcium carbonate) may also be included in the blend.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: June 14, 2022
    Assignee: BIOLOGIQ, INC.
    Inventors: Donald R. Allen, Wenji Quan, Bradford LaPray
  • Patent number: 11149144
    Abstract: Composite blends of polyester containing plastic materials, and a starch-based polymeric material that increases the biodegradability of the polyesters of such a composite in simulated or actual marine conditions (e.g., simulated by ASTM D-6691). Enhanced rate or extent of biodegradation may also be exhibited in simulated or actual land-based disposal conditions. The starch-based polymeric materials are substantially amorphous, and are homogenously blended with the polyester plastic materials. While polyester plastics such as PBAT, PLA, PCL, and/or PBS may exhibit some biodegradability characteristics when composted and/or disposed of in landfill conditions at elevated temperatures, they exhibit limited if any biodegradability when disposed of in a marine environment. Even conventional blends of starch with such polyesters do not exhibit any significant marine biodegradability with respect to the polyester components therein.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: October 19, 2021
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Donald R. Allen, Shigenobu Miura
  • Patent number: 11111355
    Abstract: Described herein are methods for rendering biodegradable a plastic material that is not itself biodegradable, by blending the plastic material with a carbohydrate-based polymeric material that is formed from a) one or more starches and a plasticizer (e.g., glycerin), b) an additive known in the art as an OXO material and/or an additive that interacts with microbes that contribute to biodegradation of the non-biodegradable material. The carbohydrate-based polymeric material is less crystalline than the non-biodegradable materials, e.g., being substantially amorphous, and having a crystallinity of no more than 20%. When tested under conditions causing biodegradation, the blend biodegrades to an extent greater than the content of the carbohydrate-based polymer.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: September 7, 2021
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Donald R. Allen
  • Patent number: 11111363
    Abstract: Described herein are strength characteristics and biodegradation of articles produced using one or more “green” sustainable polymers and one or more carbohydrate-based polymers. A compatibilizer can optionally be included in the article. In some cases, the article can include a film, a bag, a bottle, a cap or lid therefore, a sheet, a box or other container, a plate, a cup, utensils, or the like.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: September 7, 2021
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Wenji Quan, Donald R. Allen
  • Patent number: 11046840
    Abstract: Described herein are methods for rendering biodegradable a plastic material that is not itself biodegradable, by blending the plastic material with a carbohydrate-based polymeric material that is formed from one or more starches, and a plasticizer (e.g., glycerin). The carbohydrate-based polymeric material is less crystalline than the starting starch materials, e.g., being substantially amorphous, and having a crystallinity of no more than 20%. Third party testing shows blends of such materials render the entire blend biodegradable, believed to be due to the low crystalline substantially amorphous carbohydrate-based polymeric material breaking the hygroscopic barrier associated with the non-biodegradable plastic material, so that when blended together, both the plastic material and the carbohydrate-based polymeric material are biodegradable.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: June 29, 2021
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Wenji Quan, Donald R. Allen
  • Patent number: 10995201
    Abstract: Described herein are strength characteristics and biodegradation of articles produced using one or more petrochemical-based polymers and one or more carbohydrate-based polymers. A compatibilizer can optionally be included in the article. In some cases, the article can include a film or bag.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: May 4, 2021
    Assignee: BiologiQ, Inc.
    Inventors: Bradford LaPray, Wenji Quan, Donald R. Allen
  • Patent number: 10919203
    Abstract: Described herein are strength characteristics and biodegradation of articles produced using one or more petrochemical-based polymers and one or more carbohydrate-based polymers. A compatibilizer can optionally be included in the article. In some cases, the article can include a film or bag.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: February 16, 2021
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Wenji Quan, Donald R. Allen
  • Patent number: 10920044
    Abstract: Sustainable thermoplastic carbohydrate-based polymeric materials, and sustainable plastic materials including an organic odor-reducing agent to counteract a slight burned carbohydrate odor resulting from inclusion of a carbohydrate-based polymeric material within the described materials. Such carbohydrate-based polymeric material may be starch-based, and the slight characteristic odor lent by such material may be that of a somewhat burned starch, such as a popcorn or caramel corn type odor. Applicant has found that this slight odor can be substantially removed by addition of a very small fraction of particular organic materials. 4-hydroxy-3-methoxybenzaldehyde (vanillin) has been found to be particularly effective, even in very small concentrations. Other freeze-dried fruit extracts (e.g., strawberry, raspberry, blueberry, etc.) may similarly be used. As little as 20 ppm of the organic odor-reducing agent is sufficient to substantially remove the characteristic burned starch odor.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: February 16, 2021
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Donald R. Allen
  • Patent number: 10752759
    Abstract: Described herein are methods for increasing strength of blown films, by forming the films using a film blowing apparatus where the film is formed from a blend of a first polymeric material and a renewable carbohydrate-based polymeric material having particular characteristics. By using such a blend, and ensuring that the film blowing apparatus is operated at a high blow up ratio of at least 2.0, and/or using a narrow die gap of no more than 500 microns, Applicant has discovered that increased strength in the film can be obtained, as compared to where (i) the renewable carbohydrate-based polymeric material is not included or (ii) where the film is blown at lower blow up ratios and/or wider die gaps.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 25, 2020
    Assignee: BiologiQ, Inc.
    Inventors: Bradford LaPray, Donald R. Allen
  • Patent number: 10214634
    Abstract: Described herein are strength characteristics and biodegradation of articles produced using one or more petrochemical-based polymers and one or more carbohydrate-based polymers. A compatibilizer can optionally be included in the article. In some cases, the article can include a film or bag.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: February 26, 2019
    Assignee: BIOLOGIQ, INC.
    Inventors: Bradford LaPray, Wenji Quan