Patents Assigned to Bioness Neuromodulation Ltd.
  • Patent number: 11247048
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 15, 2022
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Eyal Lasko, Shmuel Springer, Mark Rubin, Amit Dar
  • Patent number: 11058867
    Abstract: A functional electrical stimulation (FES) orthosis for FES to a limb segment, including: (a) a semi-rigid, self-retaining C-shaped frame, the frame configured to substantially envelop the limb segment, the frame including a first flexible and elongated circumferentially retaining element and at least a first and a second opposing flexible and elongated circumferentially retaining elements disposed on the circumferentially opposite side of the frame, the first retaining element and the first opposing retaining element forming a pair of opposing retaining elements, and (b) a surface electrical stimulation electrode for contacting at least one stimulation point on a surface of the limb segment, associated with, and supported by, the frame, the surface electrode for electrically associating, via the frame, with a neuroprosthetic stimulator unit, so as to provide FES, wherein the opposing retaining elements are configured to be radially spring-loaded towards a center of the frame, such that in donning the orthosis
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 13, 2021
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Roger H. Nathan, Amit Dar, Jonathan Bar-Or
  • Publication number: 20200155842
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: Bioness Neuromodulation Ltd.
    Inventors: Eyal LASKO, Shmuel SPRINGER, Mark RUBIN, Amit DAR
  • Patent number: 10543365
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: January 28, 2020
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Eyal Lasko, Shmuel Springer, Mark Rubin, Amit Dar
  • Publication number: 20190167975
    Abstract: A functional electrical stimulation (FES) orthosis for FES to a limb segment, including: (a) a semi-rigid, self-retaining C-shaped frame, the frame configured to substantially envelop the limb segment, the frame including a first flexible and elongated circumferentially retaining element and at least a first and a second opposing flexible and elongated circumferentially retaining elements disposed on the circumferentially opposite side of the frame, the first retaining element and the first opposing retaining element forming a pair of opposing retaining elements, and (b) a surface electrical stimulation electrode for contacting at least one stimulation point on a surface of the limb segment, associated with, and supported by, the frame, the surface electrode for electrically associating, via the frame, with a neuroprosthetic stimulator unit, so as to provide FES, wherein the opposing retaining elements are configured to be radially spring-loaded towards a center of the frame, such that in donning the orthosis
    Type: Application
    Filed: September 24, 2018
    Publication date: June 6, 2019
    Applicant: Bioness Neuromodulation Ltd.
    Inventors: Roger H. NATHAN, Amit DAR, Jonathan BAR-OR
  • Publication number: 20190151649
    Abstract: An electrical stimulation orthosis and method therefor, the orthosis including: (a) an at least semi-rigid frame configured to substantially envelop a limb segment, the frame having at least one first complementary mechanical fastener associated therewith; (b) a surface electrical stimulation electrode assembly associated with, and supported by, the frame, the assembly having a surface stimulation electrode for contacting at least one stimulation point on the limb segment, the surface electrode assembly having an electrode base for electrically associating, via the frame, with a stimulator unit for providing a stimulation signal to the surface electrode, the electrode base having a top face for receiving the stimulation electrode, and a bottom face having at least one second complementary mechanical fastener, the first and second fasteners adapted for reversible attachment and detachment, at a plurality of locations on the frame, thereby enabling the electrical stimulation electrode assembly to be adjustably
    Type: Application
    Filed: September 17, 2018
    Publication date: May 23, 2019
    Applicant: Bioness Neuromodulation Ltd.
    Inventors: Amit DAR, Yossef SHALEV, Jonathan BAR-OR, Roger NATHAN
  • Publication number: 20190009086
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Application
    Filed: July 9, 2018
    Publication date: January 10, 2019
    Applicant: Bioness Neuromodulation Ltd.
    Inventors: Eyal LASKO, Shmuel SPRINGER, Mark RUBIN, Amit DAR
  • Patent number: 10080885
    Abstract: A functional electrical stimulation (FES) orthosis for FES to a limb segment, including: (a) a semi-rigid, self-retaining C-shaped frame, the frame configured to substantially envelop the limb segment, the frame including a first flexible and elongated circumferentially retaining element and at least a first and a second opposing flexible and elongated circumferentially retaining elements disposed on the circumferentially opposite side of the frame, the first retaining element and the first opposing retaining element forming a pair of opposing retaining elements, and (b) a surface electrical stimulation electrode for contacting at least one stimulation point on a surface of the limb segment, associated with, and supported by, the frame, the surface electrode for electrically associating, via the frame, with a neuroprosthetic stimulator unit, so as to provide FES, wherein the opposing retaining elements are configured to be radially spring-loaded towards a center of the frame, such that in donning the orthosis
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: September 25, 2018
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Roger H. Nathan, Amit Dar, Jonathan Bar-Or
  • Patent number: 10076656
    Abstract: An electrical stimulation orthosis and method therefor, the orthosis including: (a) an at least semi-rigid frame configured to substantially envelop a limb segment, the frame having at least one first complementary mechanical fastener associated therewith; (b) a surface electrical stimulation electrode assembly associated with, and supported by, the frame, the assembly having a surface stimulation electrode for contacting at least one stimulation point on the limb segment, the surface electrode assembly having an electrode base for electrically associating, via the frame, with a stimulator unit for providing a stimulation signal to the surface electrode, the electrode base having a top face for receiving the stimulation electrode, and a bottom face having at least one second complementary mechanical fastener, the first and second fasteners adapted for reversible attachment and detachment, at a plurality of locations on the frame, thereby enabling the electrical stimulation electrode assembly to be adjustably
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: September 18, 2018
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Amit Dar, Yossef Shalev, Jonathan Bar-Or, Roger Nathan
  • Patent number: 10016598
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: July 10, 2018
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Eyal Lasko, Shmuel Springer, Mark Rubin, Amit Dar
  • Publication number: 20170065815
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Application
    Filed: August 15, 2016
    Publication date: March 9, 2017
    Applicant: Bioness Neuromodulation Ltd.
    Inventors: Eyal LASKO, Shmuel SPRINGER, Mark RUBIN, Amit DAR
  • Patent number: 9415205
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 16, 2016
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Eyal Lasko, Shmuel Springer, Mark Rubin, Amit Dar
  • Publication number: 20150273205
    Abstract: An electrical stimulation orthosis and method therefor, the orthosis including: (a) an at least semi-rigid frame configured to substantially envelop a limb segment, the frame having at least one first complementary mechanical fastener associated therewith; (b) a surface electrical stimulation electrode assembly associated with, and supported by, the frame, the assembly having a surface stimulation electrode for contacting at least one stimulation point on the limb segment, the surface electrode assembly having an electrode base for electrically associating, via the frame, with a stimulator unit for providing a stimulation signal to the surface electrode, the electrode base having a top face for receiving the stimulation electrode, and a bottom face having at least one second complementary mechanical fastener, the first and second fasteners adapted for reversible attachment and detachment, at a plurality of locations on the frame, thereby enabling the electrical stimulation electrode assembly to be adjustably
    Type: Application
    Filed: March 3, 2015
    Publication date: October 1, 2015
    Applicant: Bioness Neuromodulation Ltd.
    Inventors: Amit DAR, Yossef SHALEV, Jonathan BAR-OR, Roger NATHAN
  • Patent number: 9095417
    Abstract: Systems, devices and methods for treating a targeted body tissue (e.g., bone, soft tissue, muscle, ligaments, etc.) by stimulating the body tissue with an electric current are described herein. In one embodiment, an apparatus includes a first orthosis member that includes a first electrode. The first orthosis member is configured to be disposed about a first portion of a limb of a user of the apparatus such that the first electrode is in contact with the first portion of the limb. The apparatus includes a second orthosis member that includes a second electrode. The second orthosis member is configured to be disposed about a second portion of the limb such that the second electrode is in contact with the second portion of the limb. A connector is configured to couple the second orthosis member to the first orthosis member and the connector has a selectively adjustable length.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: August 4, 2015
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Amit Dar, Shmuel Springer, Eyal Lasko, Jonathan Bar-Or
  • Publication number: 20150080979
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Application
    Filed: July 16, 2014
    Publication date: March 19, 2015
    Applicant: BIONESS NEUROMODULATION LTD.
    Inventors: Eyal LASKO, Shmuel SPRINGER, Mark RUBIN, Amit DAR
  • Patent number: 8972017
    Abstract: Methods related to an electrical stimulation orthosis are disclosed herein. In some embodiments, a method includes disposing a connector of a stimulation electrode assembly through an opening defined by a detachable layer. The connector of the stimulation electrode assembly is reversibly coupled to a connector disposed on an inner face of a frame. The detachable layer is coupled to the inner face of the frame. The method further includes disposing the frame about a limb segment of a body such that the detachable layer is in contact with a portion of the limb segment, and an electrical stimulation electrode of the stimulation electrode assembly is in contact with at least one stimulation point on a surface of the body associated with at least one of a nerve or a muscle.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: March 3, 2015
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Amit Dar, Yossef Shalev, Jonathan Bar-Or, Roger Nathan
  • Patent number: 8868217
    Abstract: Devices and methods of treating a targeted body tissue by stimulating the body tissue with an electric current. In one embodiment, an apparatus includes an electrode carrier configured to be removably coupled to an interior surface of an orthosis. The electrode carrier includes a recess configured to matingly receive a portion of an electrode. The electrode carrier is electrically coupled to the electrode when the portion of the electrode is disposed within the recess. A connection member is electrically coupled to the electrode carrier and is configured to be releasably coupled to a surface of the orthosis. The electrode carrier is electrically coupled to the orthosis when the connection member is coupled to the orthosis. In some embodiments, the electrode carrier is configured to be removably coupled to the interior surface of the orthosis. In some embodiments, at least a portion of the electrode is constructed of an absorptive material.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: October 21, 2014
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Amit Dar, Mark Rubin, Shmuel Springer, Amir Cohen
  • Publication number: 20140303705
    Abstract: A functional electrical stimulation (FES) orthosis for FES to a limb segment, including: (a) a semi-rigid, self-retaining C-shaped frame, the frame configured to substantially envelop the limb segment, the frame including a first flexible and elongated circumferentially retaining element and at least a first and a second opposing flexible and elongated circumferentially retaining elements disposed on the circumferentially opposite side of the frame, the first retaining element and the first opposing retaining element forming a pair of opposing retaining elements, and (b) a surface electrical stimulation electrode for contacting at least one stimulation point on a surface of the limb segment, associated with, and supported by, the frame, the surface electrode for electrically associating, via the frame, with a neuroprosthetic stimulator unit, so as to provide FES, wherein the opposing retaining elements are configured to be radially spring-loaded towards a center of the frame, such that in donning the orthosis
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: Bioness Neuromodulation Ltd.
    Inventors: Roger H. Nathan, Amit Dar, Jonathan Bar-Or
  • Patent number: 8788049
    Abstract: A gait modulation system including: (a) a sensor device including a sensor adapted for associating with at least one lower limb of the patient, the sensor for transducing at least one parameter related to a gait of the patient, so as to obtain gait data related to the gait, and (b) a muscle stimulator including: (i) an electrical stimulation circuit, the circuit adapted to supply an electrical stimulation output to an electrode array for performing functional electrical stimulation of at least one muscle of the lower limb, and (ii) a microprocessor, operatively connected to the at least one sensor, the microprocessor adapted for: receiving a stream of gait information based on the gait data; processing the gait information, and controlling the stimulation output based on the processing of the gait information, and wherein the microprocessor is further adapted to identify a failure in the stream of gait information, and to consequently control the electrical stimulation circuit to deliver a fail-safe stimulati
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 22, 2014
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Eyal Lasko, Shmuel Springer, Mark Rubin, Amit Dar
  • Patent number: 8694110
    Abstract: A functional electrical stimulation (FES) orthosis, including: a frame, an inner layer coupled to an inner surface of the frame, an electrode base, and a connector assembly. The frame is configured to substantially envelop a limb, and includes a retention portion configured to retain the frame about the limb, and a mounting portion configured to be coupled to an electrical stimulator. The electrode base is coupled to the inner layer, and is configured to couple a surface electrode to the inner layer. The frame and the inner layer are configured such that the electrode base is disposed at a predetermined position relative to the limb. The connector assembly is configured to electrically couple the stimulator to the electrode base. At least a portion of the connector assembly is disposed within a connector opening defined by the frame.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 8, 2014
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Roger H. Nathan, Amit Dar, Jonathan Bar-Or