Patents Assigned to BioNTech RNA Pharmaceuticals GmbH
  • Patent number: 11173120
    Abstract: The present invention related to aqueous lipid and/or liposome formulations with an increased chemical stability, to methods of preparing such aqueous formulations as well as to kits comprising them. The present invention further relates to methods of preparing lipid-based pharmaceutical compositions, to pharmaceutical compositions prepared by such methods and to methods of chemically stabilizing aqueous lipid and/or liposome formulations.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: November 16, 2021
    Assignee: BioNTech RNA Pharmaceuticals GmbH
    Inventors: Heinrich Haas, Isaac Hernan Esparza Borquez
  • Patent number: 11045418
    Abstract: The present invention relates to lipid particles comprising at least one cationic lipid, at least one water-soluble therapeutically effective compound and RNA. Further, the present invention relates to a pharmaceutical composition comprising such particles. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the particles.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: June 29, 2021
    Assignees: BioNTech RNA Pharmaceuticals GmbH, Tron-Translationale Onkologie an der Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
    Inventors: Hossam Hefesha, Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Walzer
  • Patent number: 11020477
    Abstract: A RNA vaccine containing a RNA molecule encoding an allergen or derivative thereof, in which the allergen is an allergen of Alnus glutinosa, Alternaria alternata, Ambrosia artemisiifolia, Apium graveolens, Arachis hypogaea, Betula verrucosa, Carpinus betulus, Castanea sativa, Cladosporium herbarum, Corylus avellana, Cryptomeria japonica, Cyprinus carpio, Daucus carota, Dermatophagoides pteronyssinus, Fagus sylvatica, Felis domesticus, Hevea brasiliensis, Juniperus ashei, Malus domestica, Quercus alba or Phleum pratense.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: June 1, 2021
    Assignee: BIONTECH RNA PHARMACEUTICALS GMBH
    Inventors: Josef Thalhamer, Richard Weiss, Elisabeth Rosler, Sandra Scheiblhofer, Angelika Fruhwirth
  • Patent number: 10987413
    Abstract: The present invention relates to novel tumor-associated antigens, which elicit independently from a presentation via MHC a CD8-positive T-cell response. GM-CSF-Receptor alpha chain (CSF2RA) and Tyrosinase-related protein 2 (TRP-2) were found to be targets of CD8-positive T-cell clones which could detect the proteins on the surface of HLA I negative melanoma cells. Thus, the invention provides proteins, protein fragments and polypeptides of the novel antigens for use in medicine, for example for the treatment, diagnosis and prevention of a tumor disease. Furthermore provided are nucleic acids expressing the antigens of the invention, binding agents specific for the antigens of the invention, such as T-cell receptor chains and isolated T cells which are reactive against the antigens of the invention or which express the T-cell receptors of the invention.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 27, 2021
    Assignee: BioNTech RNA Pharmaceuticals GmbH
    Inventors: Dirk Schadendorf, Annette Paschen, Silke Lübcke, Martina Fatho, Daniela Eberts, Hakim Echchannaoui, Volker Lennerz, Catherine Woelfel, Thomas Woelfel
  • Publication number: 20200399629
    Abstract: The present invention relates to RNA therapy and, in particular, decreasing immunogenicity of RNA. Specifically, the present invention provides methods for decreasing immunogenicity of RNA, said methods comprising modifying the nucleotide sequence of the RNA by reducing the uridine (U) content, wherein said reduction of the U content comprises an elimination of U nucleosides from the nucleotide sequence of the RNA and/or a substitution of U nucleosides by nucleosides other than U in the nucleotide sequence of the RNA. Using RNA having decreased immunogenicity allows administration of RNA as a drug to a subject, e.g. in order to obtain expression of a pharmaceutically active peptide or protein, without eliciting an immune response which would interfere with therapeutic effectiveness of the RNA or induce adverse effects in the subject.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Applicant: BioNTech RNA Pharmaceuticals GmbH
    Inventors: Katalin Kariko, Ugur Sahin
  • Patent number: 10808019
    Abstract: The present invention relates to cytokine fusion proteins and to nucleic acid molecules encoding such cytokine fusion proteins. The present invention further relates to cells, non-human organisms. pharmaceutical compositions and kits comprising the cytokine fusion proteins or the nucleic acid molecules encoding them, as well as to their use as medicaments.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: October 20, 2020
    Assignees: BioNTech RNA Pharmaceuticals GmbH, Universität Stuttgart, TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz GGMBH
    Inventors: Ugur Sahin, Friederike Gieseke, Ronald Backer, Sebastian Kreiter, Roland Kontermann, Klaus Pfizenmaier, Sina Fellermeier, Dafne Müller
  • Patent number: 10808242
    Abstract: The present invention relates to RNA therapy and, in particular, decreasing immunogenicity of RNA. Specifically, the present invention provides methods for decreasing immunogenicity of RNA, said methods comprising modifying the nucleotide sequence of the RNA by reducing the uridine (U) content, wherein said reduction of the U content comprises an elimination of U nucleosides from the nucleotide sequence of the RNA and/or a substitution of U nucleosides by nucleosides other than U in the nucleotide sequence of the RNA. Using RNA having decreased immunogenicity allows administration of RNA as a drug to a subject, e.g. in order to obtain expression of a pharmaceutically active peptide or protein, without eliciting an immune response which would interfere with therapeutic effectiveness of the RNA or induce adverse effects in the subject.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: October 20, 2020
    Assignee: BIONTECH RNA PHARMACEUTICALS GMBH
    Inventors: Katalin Kariko, Ugur Sahin
  • Patent number: 10738355
    Abstract: The present invention relates to the provision of vaccines which are specific for a patient's tumor and are potentially useful for immunotherapy of the primary tumor as well as tumor metastases. In one aspect, the present invention relates to a method for providing an individualized cancer vaccine comprising the steps: (a) identifying cancer specific somatic mutations in a tumor specimen of a cancer patient to provide a cancer mutation signature of the patient; and (b) providing a vaccine featuring the cancer mutation signature obtained in step (a). In a further aspect, the present invention relates to vaccines which are obtainable by said method.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: August 11, 2020
    Assignees: TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, BioNTech RNA Pharmaceuticals GmbH
    Inventors: Ugur Sahin, Sebastian Kreiter, Mustafa Diken, Jan Diekmann, Michael Koslowski, Cedrik Britten, John Christopher Castle, Martin Lower, Bernhard Renard, Tana Omokoko, Johannes Hendrikus De Graaf
  • Patent number: 10729784
    Abstract: The present invention relates to expressing RNA in cells and, in particular, enhancing viability of cells in which RNA is to be expressed. Specifically, the present invention provides methods for expressing RNA in cells comprising the steps of preventing engagement of IFN receptor by extracellular IFN and inhibiting intracellular IFN signalling in the cells. Thus, preventing engagement of IFN receptor by extracellular IFN and inhibiting intracellular IFN signalling in the cells allows repetitive transfer of RNA into the cells.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 4, 2020
    Assignees: TRON TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSM, BIONTECH RNA PHARMACEUTICALS GMBH
    Inventors: Ugur Sahin, Tim Beissert, Marco Poleganov, Stephanie Herz, Lars Koste
  • Patent number: 10717982
    Abstract: The present invention relates to nucleic acid molecules containing poly (dA:dT) regions which are stabilized in E. coli, methods of propagating such nucleic acid molecules in E. coli, methods of obtaining RNA, peptides or proteins using such nucleic acid molecules and to RNA which is obtained from such nucleic acid molecules and its use. In particular, the poly (dA:dT) regions contain at least one disruption by a sequence not encoding a sequence solely composed of A residues.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 21, 2020
    Assignees: BioNTech RNA Pharmaceuticals GmbH, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Florian Eberle, Ugur Sahin, Andreas Kuhn, Britta Vallazza, Mustafa Diken
  • Patent number: 10669322
    Abstract: The present invention relates to cytokine fusion proteins and to nucleic acid molecules encoding such cytokine fusion proteins. The present invention further relates to cells, non-human organisms, pharmaceutical compositions and kits comprising the cytokine fusion proteins or the nucleic acid molecules encoding them, as well as to their use as medicaments.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 2, 2020
    Assignees: BIONTECH RNA PHARMACEUTICALS GMBH, TRON—TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITÄTSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ GGMBH
    Inventors: Ugur Sahin, Friederike Gieseke, Sebastian Kreiter, Mustafa Diken
  • Publication number: 20200085974
    Abstract: The present invention is in the field of immunotherapy, in particular tumor immunotherapy. The present invention provides pharmaceutical formulations for delivering RNA to antigen presenting cells such as dendrite cells (DCs) in the spleen after systemic administration. In particular, the formulations described herein enable to induce an immune response after systemic administration of antigen-coding RNA.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 19, 2020
    Applicants: BioNTech RNA Pharmaceuticals GmbH, TRON-Translationale Onkologie an der Universitatsmedizin der Johannes Gutenberg-Universitat Mainz gG
    Inventors: Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Mustafa Diken, Daniel Fritz, Martin Meng, Lena Mareen Kranz, Kerstin Reuter
  • Patent number: 10576146
    Abstract: The present invention relates to RNA decorated particles such as RNA decorated lipid particles, preferably to RNA decorated liposomes. Further, the present invention relates to a pharmaceutical composition comprising RNA decorated particles such as RNA decorated lipid particles, preferably RNA decorated liposomes. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the RNA decorated particles such as RNA decorated lipid particles, preferably RNA decorated liposomes.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: March 3, 2020
    Assignees: BIONTECH RNA PHARMACEUTICALS GMBH, TRON-TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAT MAINZ
    Inventors: Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Reuter, Hossam Hefesha
  • Patent number: 10429392
    Abstract: The present invention relates to the identification of nucleic acid and amino acid sequences that are characteristic of tumor tissues, in particular tumors of the central nervous system (CNS) such as glioma, in particular glioblastoma and which represent targets for therapy or diagnosis of tumor diseases in a subject.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: October 1, 2019
    Assignees: BIONTECH RNA PHARMACEUTICALS GMBH, TRON—TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITAT
    Inventors: Ugur Sahin, Claudia Paret, Christian Bender, Kirsten Vormbrock, Diana Barea Roldan, Stefanie Hubich, Christoph Hartmann
  • Publication number: 20190250166
    Abstract: The present invention relates to methods for predicting T cell epitopes useful for vaccination. In particular, the present invention relates to methods for predicting whether modifications in peptides or polypeptides such as tumor-associated neoantigens are immunogenic and, in particular, useful for vaccination, or for predicting which of such modifications are most immunogenic and, in particular, most useful for vaccination. The methods of the invention may be used, in particular, for the provision of vaccines which are specific for a patient's tumor and thus, in the context of personalized cancer vaccines.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 15, 2019
    Applicants: BioNTech RNA Pharmaceuticals GmbH, TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-
    Inventors: Ugur SAHIN, Martin LÖWER, Arbel D. TADMOR, Sebastian BOEGEL, Barbara SCHRÖRS, Mathias VORMEHR, Sebastian KREITER
  • Publication number: 20190178871
    Abstract: The present invention relates to methods for predicting peptides or polypeptides such as T cell epitopes useful for immunotherapy such as for vaccination. In particular, the present invention relates to methods for predicting whether peptides or polypeptides such as tumor-associated antigens or epitopes, in particular tumor-associated neoantigens or neoepitopes, are immunogenic and, in particular, useful for immunotherapy such as for vaccination. The methods of the invention may be used, in particular, for the provision of vaccines which are specific for a patient's tumor and, thus, in the context of personalized cancer vaccines.
    Type: Application
    Filed: May 10, 2017
    Publication date: June 13, 2019
    Applicants: BioNTech RNA Pharmaceuticals GmbH, TRO-Translationable Onkologie an der Unversitatsme dizin der Johannes Gutenberg-Universitat Mainz
    Inventors: Mathias Vormehr, Ugur Sahin, Barbara Schrörs, Martin Löwer, Sebastian Boegel
  • Publication number: 20190083593
    Abstract: The present invention relates to a patient-specific tumor treatment targeting individual expression patterns of tumor antigens, in particular shared tumor antigens, and individual tumor mutations. In one aspect, the present invention relates to a method for preventing or treating cancer in a patient comprising the steps of: (i) inducing a first immune response against one or more tumor antigens in the patient, and (ii) inducing a second immune response against one or more tumor antigens in the patient wherein the second immune response is specific for cancer specific somatic mutations present in cancer cells of the patient.
    Type: Application
    Filed: October 26, 2018
    Publication date: March 21, 2019
    Applicants: BioNTech RNA Pharmaceuticals GmbH, TRON-Translationale Onkologie an der Universitatsmedizin der Johannes Gutenberg-Univers
    Inventors: Ugur Sahin, Claudia Paret, Kirsten Vormbrock, Christian Bender, Jan Diekmann
  • Patent number: 10207009
    Abstract: The present invention relates to expressing RNA in cells and, in particular, enhancing viability of cells in which RNA is to be expressed. Specifically, the present invention provides methods for expressing RNA in cells comprising the steps of preventing engagement of IFN receptor by extracellular IFN and inhibiting intracellular IFN signalling in the cells. Thus, preventing engagement of IFN receptor by extracellular IFN and inhibiting intracellular IFN signalling in the cells allows repetitive transfer of RNA into the cells.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: February 19, 2019
    Assignees: TRON TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSM, BIONTECH RNA PHARMACEUTICALS GMBH
    Inventors: Ugur Sahin, Tim Beissert, Marco Poleganov, Stephanie Herz, Lars Koste
  • Patent number: 10155031
    Abstract: The present invention relates to a patient-specific tumor treatment targeting individual expression patterns of tumor antigens, in particular shared tumor antigens, and individual tumor mutations. In one aspect, the present invention relates to a method for preventing or treating cancer in a patient comprising the steps of: (i) inducing a first immune response against one or more tumor antigens in the patient, and (ii) inducing a second immune response against one or more tumor antigens in the patient wherein the second immune response is specific for cancer specific somatic mutations present in cancer cells of the patient.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 18, 2018
    Assignees: BioNTech RNA Pharmaceuticals GmbH, TRON (Translationale Onkologie an der Universitatsmedizin der Johannes Gutenberg-Universitat Mainz Gemeinnutzige GmbH
    Inventors: Ugur Sahin, Claudia Paret, Kirsten Vormbrock, Christian Bender, Jan Diekmann
  • Patent number: 9950065
    Abstract: The present invention relates to RNA decorated particles such as RNA decorated lipid particles, preferably to RNA decorated liposomes. Further, the present invention relates to a pharmaceutical composition comprising RNA decorated particles such as RNA decorated lipid particles, preferably RNA decorated liposomes. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the RNA decorated particles such as RNA decorated lipid particles, preferably RNA decorated liposomes.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: April 24, 2018
    Assignees: BIONTECH RNA PHARMACEUTICALS GMBH, TRON—TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAT MAINZ GEMEINNUZIGE GMBH
    Inventors: Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Reuter, Hossam Hefresha