Patents Assigned to BIONTECH SE
  • Patent number: 11504419
    Abstract: The present invention relates to a patient-specific tumor treatment targeting individual expression patterns of tumor antigens, in particular shared tumor antigens, and individual tumor mutations. In one aspect, the present invention relates to a method for preventing or treating cancer in a patient comprising the steps of: (i) inducing a first immune response against one or more tumor antigens in the patient, and (ii) inducing a second immune response against one or more tumor antigens in the patient wherein the second immune response is specific for cancer specific somatic mutations present in cancer cells of the patient.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: November 22, 2022
    Assignees: BioNTech SE, TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Ugur Sahin, Claudia Paret, Kirsten Vormbrock, Christian Bender, Jan Diekmann
  • Patent number: 11492628
    Abstract: The present invention relates to stabilization of RNA, in particular mRNA, and an increase in mRNA translation. The present invention particularly relates to a modification of RNA, in particular in vitro-transcribed RNA, resulting in increased transcript stability and/or translation efficiency. According to the invention, it was demonstrated that certain sequences in the 3?-untranslated region (UTR) of an RNA molecule improve stability and translation efficiency.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: November 8, 2022
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Alexandra Orlandini Von Niessen, Stephanie Fesser, Britta Vallazza, Tim Beissert, Andreas Kuhn, Ugur Sahin, Marco Alexander Poleganov
  • Patent number: 11471522
    Abstract: The present invention relates to methods and compositions for stimulating an immune response. In particular, the present invention relates to immunostimulatory RNA molecules comprising sequences derived from an Influenza A virus nucleoprotein-encoding RNA molecule that act as adjuvants and/or immunostimulatory agents to enhance host immune responses.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 18, 2022
    Assignees: BIONTECH SE, TRON—TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITÄTSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ GEMEINNÜTZIGE GMBH
    Inventors: Mahjoub Bihi, Ugur Sahin, Mustafa Diken, Thorsten Klamp
  • Patent number: 11459395
    Abstract: The present invention relates to novel binding agents and their use in medicine. In particular, the invention relates to binding agents such as bispecific antibodies binding human PD-L1 and binding human CD137. The invention furthermore relates to uses of the antibodies of the invention and to methods, nucleic acid constructs and host cells for producing antibodies of the invention.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: October 4, 2022
    Assignees: GENMAB A/S, BIONTECH SE
    Inventors: Isil Altintas, David Satijn, Rik Rademaker, Paul Parren, Ugur Sahin, Friederike Gieseke, Alexander Muik, Christian Grunwitz, Edward Van den Brink, Dennis Verzijl
  • Patent number: 11440966
    Abstract: Multispecific antibodies binding to human CD40 and human CD137, methods for preparing such multispecific antibodies, and methods of using such multispecific antibodies for therapeutic or other purposes.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: September 13, 2022
    Assignees: GENMAB A/S, BIONTECH SE
    Inventors: Isil Altintas, David Satijn, Rik Rademaker, Paul Parren, Friederike Gieseke, Ugur Sahin
  • Patent number: 11395799
    Abstract: The present disclosure relates to methods for preparing RNA lipoplex particles for delivery of RNA to target tissues after parenteral administration, in particular after intravenous administration, and compositions comprising such RNA lipoplex particles. The present disclosure also relates to methods which allow preparing RNA lipoplex particles in an industrial GMP-compliant manner. Furthermore, the present disclosure relates to methods and compositions for storing RNA lipoplex particles without substantial loss of the product quality and, in particular, without substantial loss of RNA activity.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: July 26, 2022
    Assignee: BioNTech SE
    Inventors: Heinrich Haas, Sebastian Hörner, Isaac Hernan Esparza Borquez, Thomas Michael Hiller, Ferdia Bates
  • Patent number: 11318195
    Abstract: The present invention relates to compositions comprising polyplex formulations for delivery of RNA to a target organ or a target cell after parenteral administration, in particular after intramuscular administration. More precisely, the present invention relates to formulations for administration of RNA such as self-replicating RNA, in particular by intramuscular injection. In more detail, the formulations comprise polyplex particles from single stranded RNA and a polyalkyleneimine. The RNA may encode a protein of interest, such as a pharmaceutically active protein. Furthermore, the present invention relates to pharmaceutical products, comprising said RNA polyplex formulations for parenteral application to humans or to animals. The present invention relates as well to manufacturing of such pharmaceutical products, comprising, optionally, steps of sterile filtration, freezing and dehydration.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 3, 2022
    Assignees: BIONTECH SE, TRON-TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAT MAINZ GEMEINNUTZIGE GMBH
    Inventors: Ugur Sahin, Heinrich Haas, Annette Vogel, Daniel Zucker, Stephanie Erbar, Kerstin Walzer, Anne Schlegel, Sebastian Hörner, Sebastian Kreiter, Mustafa Diken, Jorge Moreno Herrero
  • Patent number: 11298426
    Abstract: The present invention relates to fusion molecules of antigens, the nucleic acids coding therefor and the use of such fusion molecules and nucleic acids. In particular, said invention relates to fusion molecules, comprising an antigen and the trans-membrane region and cytoplasmic region of a MHC molecule and/or the cytoplasmic region of a MHC or a SNARE molecule.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: April 12, 2022
    Assignee: BioNTech SE
    Inventors: Ozlem Tureci, Ugur Sahin, Sebastian Kreiter
  • Patent number: 11248264
    Abstract: The present invention relates to the provision of vaccines which are specific for a patient's tumor and are potentially useful for immunotherapy of the primary tumor as well as tumor metastases. In one aspect, the present invention relates to a method for providing an individualized cancer vaccine comprising the steps: (a) identifying cancer specific somatic mutations in a tumor specimen of a cancer patient to provide a cancer mutation signature of the patient; and (b) providing a vaccine featuring the cancer mutation signature obtained in step (a). In a further aspect, the present invention relates to vaccines which are obtainable by said method.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: February 15, 2022
    Assignees: TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, BioNTech SE
    Inventors: Ugur Sahin, Sebastian Kreiter, Mustafa Diken, Jan Diekmann, Michael Koslowski, Cedrik Britten, John Christopher Castle, Martin Löwer, Bernhard Renard, Tana Omokoko, Johannes Hendrikus De Graaf
  • Patent number: 11222711
    Abstract: The present invention relates to methods for predicting T cell epitopes. In particular, the present invention relates to methods for predicting whether modifications in peptides or polypeptides such as tumor-associated neoantigens are immunogenic or not. The methods of the invention are useful, in particular, for the provision of vaccines which are specific for a patient's tumor and, thus, in the context of personalized cancer vaccines.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: January 11, 2022
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Ugur Sahin, Arbel David Tadmor, John Christopher Castle, Sebastian Boegel, Martin Löwer
  • Publication number: 20210346485
    Abstract: The present disclosure provides methods, uses, and kits for treating cancer in an individual. The methods comprise administering to the individual a PD-1 axis binding antagonist (such as an anti-PD-1 or anti-PD-L1 antibody) and an RNA vaccine (e.g., a personalized cancer vaccine that comprises one or more polynucleotides encoding one or more neoepitopes resulting from cancer-specific somatic mutations present in a tumor specimen obtained from the individual). Further provided herein are RNA molecules (e.g., a personalized RNA cancer vaccine that comprises one or more polynucleotides encoding one or more neoepitopes resulting from cancer-specific somatic mutations present in a tumor specimen obtained from the individual), as well as DNA molecules and methods useful for production or use of RNA vaccines.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 11, 2021
    Applicants: Genentech, Inc., BioNTech SE
    Inventors: Lars MUELLER, Gregg Daniel FINE
  • Patent number: 11091557
    Abstract: Multispecific antibodies binding to human CD40 and human CD137, methods for preparing such multispecific antibodies, and methods of using such multispecific antibodies for therapeutic or other purposes.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: August 17, 2021
    Assignees: GENMAB A/S, BioNTech SE
    Inventors: Isil Altintas, David Satijn, Rik Rademaker, Paul Parren, Friederike Gieseke, Ugur Sahin
  • Patent number: 11084882
    Abstract: Multispecific antibodies binding to human CD40 and human CD137, methods for preparing such multispecific antibodies, and methods of using such multispecific antibodies for therapeutic or other purposes.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 10, 2021
    Assignees: GENMAB A/S, BIONTECH SE
    Inventors: Isil Altintas, David Satijn, Rik Rademaker, Paul Parren, Friederike Gieseke, Ugur Sahin
  • Patent number: 11046745
    Abstract: The present invention provides molecules that mimic antigenic determinants of the CD3 (cluster of differentiation 3) T-cell co-receptor epsilon chain (CD3?). These molecules compete with CD3? for binding to a CD3? binding domain. e.g. a CD3? binding domain of an antibody, and are capable of detecting antibodies against CD3?. The mimotopes of the invention may be used to generate or inhibit immune responses in animals and preferably humans. Additionally, they may serve as tools for anti-CD3? antibody purification and the detection of anti-CD3? antibodies in biological samples.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 29, 2021
    Assignees: BioNTech SE, TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, JPT Peptide Technologies GmbH
    Inventors: Ugur Sahin, Laura Marie Kring, Markus Fiedler, Matin Daneschdar, Hans-Ulrich Schmoldt, Ulf Reimer, Karsten Schnatbaum
  • Patent number: 10968280
    Abstract: The present invention relates to novel binding agents and their use in medicine. In particular, the invention relates to binding agents such as bispecific antibodies binding human PD-L1 and binding human CD137. The invention furthermore relates to uses of the antibodies of the invention and to methods, nucleic acid constructs and host cells for producing antibodies of the invention.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: April 6, 2021
    Assignees: GENMAB A/S, BioNTech SE
    Inventors: Isil Altintas, David Satijn, Rik Rademaker, Paul Parren, Ugur Sahin, Friederike Gieseke, Alexander Muik, Christian Grunwitz
  • Patent number: 10927181
    Abstract: The present invention relates to binding agents binding to receptors of the TNF superfamily, in particular binding agents binding to at least two different receptors of the TNF superfamily, as well as to their use in medicine. The present invention further relates to nucleic acid molecules encoding such binding agents, to cells comprising such nucleic acid molecules and to pharmaceutical compositions and kits.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: February 23, 2021
    Assignees: BIONTECH SE, GENMAB A/S
    Inventors: Ugur Sahin, Friederike Gieseke, Isil Altintas, David Satijn, Paul Parren
  • Patent number: 10858415
    Abstract: The present invention provides molecules that mimic antigenic determinants of the integral transmembrane protein claudin 18.2 (CLDN18.2). These molecules compete with CLDN18.2 for binding to a CLDN18.2 binding domain, e.g. a CLDN18.2 binding domain of an antibody, and are capable of detecting antibodies against CLDN18.2. The mimotopes of the invention may be used to generate or inhibit immune responses in animals and preferably humans. Furthermore, they can be used for purposes of detecting agents comprising a CLDN18.2 binding domain in biological samples as well as for purifying agents comprising a CLDN18.2 binding domain.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: December 8, 2020
    Assignees: TRON—TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSMEDIZIN DER JOHANNES GUTTENBERG-UNIVERSITAT MAINZ GEMEINNUIZIGE GMBH, JPT PEPTIDE TECHNOLOGIES GMBH, BIONTECH SE
    Inventors: Ugur Sahin, Matin Daneschdar, Hans-Ulrich Schmoldt, Laura-Marie Kring (née Plum), Markus Fiedler, Ulf Reimer, Karsten Schnatbaum
  • Patent number: 10729785
    Abstract: The present invention relates to particles comprising protamine, RNA and at least one endosome destabilizing agent, to methods of their production and to pharmaceutical compositions or kits containing the particles. It further relates to particles comprising protamine and RNA for use in methods of treatment or prevention of diseases and to kits comprising such particles together with at least one endosome destabilizing agent.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: August 4, 2020
    Assignee: BioNTech SE
    Inventor: Steve Pascolo
  • Patent number: 10457735
    Abstract: The present invention relates to binding agents binding to receptors of the TNF superfamily, in particular binding agents binding to at least two different receptors of the TNF superfamily, as well as to their use in medicine. The present invention further relates to nucleic acid molecules encoding such binding agents, to cells comprising such nucleic acid molecules and to pharmaceutical compositions and kits.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: October 29, 2019
    Assignees: BIONTECH SE, GENMAB A/S
    Inventors: Ugur Sahin, Friederike Gieseke, Isil Altintas, David Satijn, Paul Parren