Patents Assigned to BionX Medical Technologies, Inc.
  • Publication number: 20200146847
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for Reflex Parameter Modulation a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Applicant: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, JR.
  • Publication number: 20200085599
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Applicant: BionX Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 10575971
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: March 3, 2020
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Patent number: 10537449
    Abstract: In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 21, 2020
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Zhixiu Han, Christopher Eric Barnhart, David Adams Garlow, Adrienne Bolger, Hugh Miller Herr, Gary Girzon, Richard J. Casler, Jennifer T. McCarthy
  • Patent number: 10531965
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 14, 2020
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, Jr.
  • Patent number: 10485682
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: November 26, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 10406002
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: September 10, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 10335292
    Abstract: An improvement to a prosthetic device which provides a spring member between first and second structural members that are rotatably connected to one another, the spring member providing predictable resistance as it is compressed by the rotation of the first and second structural members with respect to each other. The known resistance of the spring is used as an input to a model controlling a motor control circuit to provide counter-torque as rotational torque is applied to compress the spring.
    Type: Grant
    Filed: September 3, 2017
    Date of Patent: July 2, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Weston Smith, Christopher Morse, Paul Balutis
  • Patent number: 10285828
    Abstract: Knee orthoses or prostheses can be used to automatically, when appropriate, initiate a stand-up sequence based on the position of a person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to a position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: May 14, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr.
  • Publication number: 20190070021
    Abstract: An improvement to a prosthetic device which provides a spring member between first and second structural members that are rotatably connected to one another, the spring member providing predictable resistance as it is compressed by the rotation of the first and second structural members with respect to each other. The known resistance of the spring is used as an input to a model controlling a motor control circuit to provide counter-torque as rotational torque is applied to compress the spring.
    Type: Application
    Filed: September 3, 2017
    Publication date: March 7, 2019
    Applicant: Bionx Medical Technologies, Inc.
    Inventors: Weston Smith, Christopher Morse, Paul Balutis
  • Patent number: 10213323
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 26, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Richard J. Casler, Jr., Hugh M. Herr
  • Patent number: 10143570
    Abstract: In a powered actuator for supplying torque, joint equilibrium, and/or impedance to a joint, a motor is directly coupled to a low-reduction ratio transmission, e.g., a transmission having a gear ratio less than about 80 to 1. The motor has a low dissipation constant, e.g., less than about 50 W/(Nm)2. The transmission is serially connected to an elastic element that is also coupled to the joint, thereby supplying torque, joint equilibrium, and/or impedance to the joint while minimizing the power consumption and/or acoustic noise of the actuator.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: December 4, 2018
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Jeff Anthony Weber, Richard James Casler, Jr.
  • Patent number: 10105244
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 23, 2018
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Zhixiu Han
  • Patent number: 10080672
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: September 25, 2018
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Rick Casler, Hugh Miller Herr, Zhixiu Han, Christopher E. Barnhart
  • Patent number: 10070974
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 11, 2018
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Patent number: 9872782
    Abstract: In a powered actuator for supplying torque, joint equilibrium, and/or impedance to a joint, a motor is directly coupled to a low-reduction ratio transmission, e.g., a transmission having a gear ratio less than about 80 to 1. The motor has a low dissipation constant, e.g., less than about 50 W/(Nm)2. The transmission is serially connected to an elastic element that is also coupled to the joint, thereby supplying torque, joint equilibrium, and/or impedance to the joint while minimizing the power consumption and/or acoustic noise of the actuator.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: January 23, 2018
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Jeff Anthony Weber, Richard James Casler
  • Patent number: 9839552
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint, and a controller that modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 12, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Zhixiu Han, Christopher E. Barnhart, Hugh M. Herr, Christopher Williams, Jeff A. Weber, Richard J. Casler, Jr.
  • Patent number: 9737419
    Abstract: In an artificial limb system having an actuator coupled to a joint for applying a torque characteristic thereto, a control bandwidth of a motor controller for a motor included in the actuator can be increased by augmenting a current feedback loop in the motor controller with a feed forward of estimated back electromotive force (emf) voltage associated with, the motor. Alternatively, the current loop is eliminated and replaced with a voltage loop related to joint torque. The voltage loop may also be augmented with the feed forward of estimated back emf, to improve the robustness of the motor controller.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 22, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Christopher Williams, Christopher Eric Barnhart, Zhixiu Han, Charles E. Rohrs, Richard J. Casler, Jr.
  • Patent number: 9693883
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step by using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle. In some embodiments, a series elastic element is connected in series with a motor that can drive the ankle, and at least one sensor is provided with an output from which a deflection of the series elastic element can be determined.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 4, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon
  • Patent number: 9687377
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: June 27, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Zhixiu Han, Christopher Williams, Jeff A. Weber, Christopher E. Barnhart, Hugh M. Herr, Richard J. Casler, Jr.