Abstract: A method can include measuring increments in a response signal in multiple sample injection sessions in a sensing channel until the response signal reaches a threshold response capacity. Measuring the increments can include: (a) starting a respective sample injection session of the multiple sample injection sessions by injecting a sample with an analyte to the sensing channel; (b) controlling the valve port to terminate the respective sample injection session; (c) measuring the response signal based on a reaction between the sample and the ligand; and/or (d) upon determining that the response signal is not greater than the threshold response capacity, determining a respective response increment of the increments for the respective sample injection session, and starting a subsequent session of the multiple sample injection sessions for determining a subsequent increment of the increments. The method further can include determining an analyte concentration of the sample based at least in part on the increments.
Abstract: A method for measuring molecular interactions on a plurality of regions of interest (ROIs) of a sensor surface of a biosensor device. The method can include receiving respective biosensor response data for each ROI of the plurality of ROIs. The method further can include determining a sample group and a reference group for the plurality of ROIs. The sample group can include sample group ROIs of the plurality of ROIs, and the reference group can include reference group ROIs of the plurality of ROIs. The method also can include generating one or more sample data distributions based on one or more respective sample group binding parameters for each of the sample group ROIs derived from the respective biosensor response data for the each of the sample group ROIs.
Abstract: A system in an embodiment can comprise an optical assembly, an surface-plasmon-resonance (SPR) light source, and an SPR camera. The optical assembly can comprise a hemispherical prism comprising a top surface configured to support a SPR sensor; and a high numerical aperture (NA) lens located distal from the top surface of the hemispherical prism. The SPR light source can be configured to emit a light beam for SPR imaging. The SPR camera can be configured to capture an SPR image. The SPR sensor further can comprise a surface configured to contact a sample. The high NA lens can be configured to refract the light beam toward the hemispherical prism. The hemispherical prism can be configured to collimate the light beam, as refracted by the high NA lens, toward the SPR sensor. The high NA lens further can be configured to receive and refract the light beam toward the SPR camera, after the light beam is reflected by the surface of the SPR sensor. Other embodiments are disclosed.
Abstract: A system in an embodiment can comprise an optical assembly, an SPR light source, and an SPR camera. The optical assembly in this embodiment can comprise a hemispherical prism comprising a planar top surface configured to support a surface-plasmon-resonance (SPR) sensor; a high numerical aperture (NA) lens; and a housing configured to mount the hemispherical prism and the high NA lens the such that the high NA lens is located distal from the planar top surface of the hemispherical prism. The SPR light source in this embodiment can be configured to emit a low-coherent monochromatic light beam for SPR imaging toward the high NA lens. The SPR camera in this embodiment can be configured to capture an SPR image formed after the low-coherent monochromatic light beam is incident upon and reflected by a metal-coated sample contacting surface of the SPR sensor.