Abstract: Flow-through capacitors are provided with one or more charge barrier layers. Ions trapped in the pore volume of flow-through capacitors cause inefficiencies as these ions are expelled during the charge cycle into the purification path. A charge barrier layer holds these pore volume ions to one side of a desired flow stream, thereby increasing the efficiency with which the flow-through capacitor purifies or concentrates ions.
Abstract: Flow-through capacitors are provided with one or more charge barrier layers. Ions trapped in the pore volume of flow-through capacitors cause inefficiencies as these ions are expelled during the charge cycle into the purification path. A charge barrier layer holds these pore volume ions to one side of a desired flow stream, thereby increasing the efficiency with which the flow-through capacitor purifies or concentrates ions.
Abstract: The invention features a flow-through capacitor system that achieves enhanced power efficiency by sequential control and actuation of at least two or more flow-through capacitor cells within the flow-through capacitor system. Alternatively or in addition, power efficiency is enhanced by integrating the purification stages of the system, for example, by placing more than one cell within a single cell casing. Preferably, integrated stage flow-through capacitors are controlled sequentially.
Type:
Application
Filed:
August 6, 2004
Publication date:
July 12, 2007
Applicant:
BIOSOURCE, INCORPORATED
Inventors:
Marc Andelman, Shihab Kuran, Jon Zulkiewicz