Patents Assigned to Bioventrix, Inc.
  • Patent number: 11903834
    Abstract: According to one embodiment, a heart anchor tensioning device includes a main body and an elongate shaft. A tension member or tether may be inserted through a lumen of the elongate shaft to allow the shaft to be advanced over the tension member and within a body while the main body is positioned outside of the body. The device also includes an anchor coupling mechanism that is configured to engage a heart anchor and move the heart anchor into engagement with a first wall of the heart. The anchor coupling mechanism is able to lock the heart anchor to inhibit proximal movement of the heart anchor along the tension member. The device further includes a tension indicating mechanism that provides an indication of a force being applied to the heart anchor by the device.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: February 20, 2024
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Ernest Heflin, Gilbert Mata, Jr., Lawrence Crainich, Brian LaRose
  • Patent number: 11793643
    Abstract: Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor assembly, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor assembly is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along a tension member of the anchor assembly combined with a mechanical stop and a sealing member hold the device in place once deployed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: October 24, 2023
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon S. Annest
  • Patent number: 11744615
    Abstract: A method for performing a therapeutic intervention in a pericardial space of a heart includes delivering a catheter into a right atrium of the heart and steering the catheter so that a distal end of the catheter is positioned adjacent an access site in the right atrium. The distal end of the catheter is anchored in a heart wall of the right atrium adjacent the access site and the heart wall is inverted to separate an exterior surface of the inverted heart wall from contact with parietal pericardial tissue. The inverted heart wall is penetrated to provide access to the pericardial space around the heart. A device is delivered through the penetrating in the inverted heart wall to perform the therapeutic intervention in the pericardial space.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: September 5, 2023
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon S. Annest, Michael S. Dana
  • Patent number: 11559212
    Abstract: According to one embodiment, a tissue penetrating device includes an elongate shaft having a proximal end, a distal end, and a lumen extending there between. A first needle is disposed within the lumen of the elongate shaft and is extendable therefrom between a first configuration and a second configuration. In the first configuration, the first needle is disposed within the elongate shaft's lumen and is substantially aligned with an axis of the lumen. In the second configuration, the first needle extends distally of the elongate shaft's distal end and bends away from the lumen's axis. A second needle is disposed within a lumen of the first needle and is extendable therefrom when the first needle is positioned in the first configuration and when the first needle is positioned in the second configuration. The second needle may be extended from the first needle to penetrate tissue of a patient.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: January 24, 2023
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Meir Moshe, Lon Annest
  • Patent number: 11540822
    Abstract: A heart tissue gripping device may include a body portion, an elongate shaft, and a tissue gripping member that is attached to the distal end of the elongate shaft. The tissue gripping member being may be positioned adjacent a heart surface by insertion through an incision in the body. The tissue gripping member may releasably attach to tissue of the heart surface to facilitate a surgical instrument in performing one or more procedures. A coupling of the tissue gripping member may releasably attach the surgical device to the tissue gripping member to allow the device to access the tissue of the heart surface.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: January 3, 2023
    Assignee: BioVentrix, Inc.
    Inventors: Meir Moshe, Lon S. Annest, Kevin Van Bladel
  • Patent number: 11529234
    Abstract: According to one embodiment, a protective device for use in congestive heart failure treatments, and other treatments, includes a control mechanism, an elongate shaft, and a protective plate. The control mechanism is coupled with a proximal end of the elongate shaft and the protective plate is pivotably coupled with a distal end of the elongate shaft. The elongate shaft enables the protective plate to be inserted within a body and navigated distally of a heart wall. The protective plate has a relatively wide and thin body portion and is pivotable relative to the elongate shaft by operation of the control mechanism. Pivoting and/or navigating of the protective plate within the body allows the protective plate to be positioned adjacent the heart wall to shield body organs or tissue surrounding the heart wall from being damaged by surgical instruments inserted through the heart wall.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: December 20, 2022
    Assignee: BIOVENTRIX, INC.
    Inventors: Kevin Van Bladel, Aaron Weiss, Lon Annest, Gilbert Mata, Jr.
  • Patent number: 11478353
    Abstract: A system for treating a heart includes a catheter that is advanceable into a chamber of the heart and that is repositionable within the chamber between a septal wall and an external wall to enable penetration of the septal and external walls via a needle that is disposed within a lumen of the catheter. A first guidewire is deliverable through the penetration of the septal wall so that a distal end of the first guidewire is disposed within another chamber of the heart. A second guidewire is deliverable through the penetration of the external wall so that a distal end of the second guidewire is disposed externally of the external wall. The first guidewire is connectable to the second guidewire to join or form a path within the chamber that extends between the septal wall and the external wall.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: October 25, 2022
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Serjan Nikolic, Lon Annest, Rovil Arcia
  • Patent number: 11419723
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of structures which limit a size of a chamber of the heart, such as by deploying one or more tensile member to bring a wall of the heart and a septum of the heart into contact. A plurality of tension members may help exclude scar tissue and provide a more effective remaining ventricle chamber. The implant may be deployed during beating of the heart, often in a minimally invasive or less-invasive manner. Trauma to the tissues of the heart may be inhibited by selectively approximating tissues while a pressure within the heart is temporarily reduced. Three-dimensional implant locating devices and systems facilitate beneficial heart chamber volumetric shape remodeling.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: August 23, 2022
    Assignee: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, David K. Swanson
  • Patent number: 11399942
    Abstract: Medical devices, systems, and methods reduce the distance between two points in tissue, often for treatment of congestive heart failure and often in a minimally invasive manner. An anchor is inserted along an insertion path through a first wall of the heart. An arm of the anchor is deployed and rotationally positioned according to a desired alignment. Application of tension to the anchor may draw the first and second walls of the heart into contact along a desired contour so as to effect a desired change in the geometry of the heart. Additional anchors may be inserted and aligned with the first anchor to close off a portion of a ventricle such that the ventricle is geometrically remodeled and disease progression is reversed, halted, and/or slowed.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: August 2, 2022
    Assignee: BioVentrix, Inc.
    Inventors: Lon S. Annest, Claudio Argento, William Butler, Ernest Heflin
  • Patent number: 11331190
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of one or more implant structures which limit a size of a chamber of the heart, such as by deploying a tensile member to bring a wall of the heart toward (optionally into contact with) a septum of the heart.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 17, 2022
    Assignee: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, Sing-Fatt Chin, David K. Swanson
  • Patent number: 11273040
    Abstract: A method for reducing left ventricular volume, which comprises identifying infarcted tissue during open chest surgery; reducing left ventricle volume while preserving the ventricular apex; and realigning the ventricular apex, such that the realigning step comprises closing the lower or apical portion of said ventricle to achieve appropriate functional contractile geometry of said ventricle in a dyskinetic ventricle of a heart.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: March 15, 2022
    Assignee: BIOVENTRIX, INC.
    Inventors: Sing-Fatt Chin, Arthur Bertolero, Lon S. Annest
  • Patent number: 11259929
    Abstract: Various methods and devices are provided for reducing the volume of the ventricles of the heart. In one embodiment, a method for reducing the ventricular volume of a heart chamber is provided including the steps of inserting an anchoring mechanism onto dysfunctional cardiac tissue, deploying one or more anchors into the dysfunctional cardiac tissue, raising the dysfunctional cardiac tissue using the anchors, and securing the anchors to hold the dysfunctional cardiac tissue in place. Further, a device for reducing the volume of the ventricles of a heart chamber is provided where the device has one or more clips for placement on dysfunctional cardiac tissue of a heart, one or more anchors for deployment and securement into the dysfunctional cardiac tissue, and a lifting mechanism for raising the one or more anchors and the dysfunctional cardiac tissue.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: March 1, 2022
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon Annest, Robert O'Reilly
  • Publication number: 20220000622
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Application
    Filed: June 17, 2021
    Publication date: January 6, 2022
    Applicant: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Patent number: 11185414
    Abstract: A heart implant alignment and delivery device includes an elongate body having an opening that is disposed near a distal end of the elongate body. The opening is configured so that a heart implant is positionable within the opening with the heart implant exposed to a surrounding environment and so that the heart implant is substantially aligned with the distal end of the elongate body. The device also includes an implant reposition member, such as a cable, that is releasably coupleable with the heart implant and that is operationally coupled with the elongate body so that a first operation of the implant reposition member causes the heart implant to be retractably deployed from the opening of the elongate body. The first operation of the implant reposition member may be effected via a handle mechanism that is attached to a proximal end of the elongate body.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: November 30, 2021
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Meir Moshe, Michael S. Dana
  • Patent number: 11051941
    Abstract: Medical devices, systems, and methods reduce the distance between two locations in tissue in a minimally invasive manner, often for treatment of congestive heart failure. In one embodiment, an anchor of an implant system may, when the implant system is fully deployed, reside within the right ventricle in engagement with the ventricular septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along an epicardial surface of the heart. Deployment of the anchor within the right ventricle may be performed by inserting a guidewire through the septal wall into the right ventricle. The anchor may be inserted into the right ventricle over the guidewire and through a lumen of a delivery catheter. Delivering the anchor over the guidewire may provide improved control in the delivery and placement of the anchor within the right ventricle.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: July 6, 2021
    Assignee: BioVentrix, Inc.
    Inventors: Lon Annest, Murray Sheldon, Kevin Van Bladel, Ernie Heflin, William Butler, Andrew Wechsler, John Bower, Rovil Arcia
  • Patent number: 11051942
    Abstract: Embodiments described herein include devices, systems, and methods for reducing the distance between two locations in tissue. In one embodiment, an anchor may reside within the right ventricle in engagement with the septum. A tension member may extend from that anchor through the septum and an exterior wall of the left ventricle to a second anchor disposed along a surface of the heart. Perforating the exterior wall and the septum from an epicardial approach can provide control over the reshaping of the ventricular chamber. Guiding deployment of the implant from along the epicardial access path and another access path into and through the right ventricle provides control over the movement of the anchor within the ventricle. The joined epicardial pathway and right atrial pathway allows the tension member to be advanced into the heart through the right atrium and pulled into engagement along the epicardial access path.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 6, 2021
    Assignee: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon Annest, Murray Sheldon, Ernie Heflin, Andrew Wechsler, John Stiggelbout, Rovil Arcia, John Bower
  • Publication number: 20200289268
    Abstract: According to one embodiment, a heart anchor tensioning device includes a main body and an elongate shaft. A tension member or tether may be inserted through a lumen of the elongate shaft to allow the shaft to be advanced over the tension member and within a body while the main body is positioned outside of the body. The device also includes an anchor coupling mechanism that is configured to engage a heart anchor and move the heart anchor into engagement with a first wall of the heart. The anchor coupling mechanism is able to lock the heart anchor to inhibit proximal movement of the heart anchor along the tension member. The device further includes a tension indicating mechanism that provides an indication of a force being applied to the heart anchor by the device.
    Type: Application
    Filed: January 16, 2020
    Publication date: September 17, 2020
    Applicant: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Lon S. Annest, Ernest Heflin, Gilbert Mata, JR., Lawrence Crainich, Brian LaRose
  • Publication number: 20200229928
    Abstract: Medical devices, systems, and methods reduce the distance between two points in tissue, often for treatment of congestive heart failure and often in a minimally invasive manner. An anchor is inserted along an insertion path through a first wall of the heart. An arm of the anchor is deployed and rotationally positioned according to a desired alignment. Application of tension to the anchor may draw the first and second walls of the heart into contact along a desired contour so as to effect a desired change in the geometry of the heart. Additional anchors may be inserted and aligned with the first anchor to close off a portion of a ventricle such that the ventricle is geometrically remodeled and disease progression is reversed, halted, and/or slowed.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 23, 2020
    Applicant: BioVentrix, Inc.
    Inventors: Lon S. Annest, Claudio Argento, William Butler, Ernest Heflin
  • Publication number: 20200214842
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of structures which limit a size of a chamber of the heart, such as by deploying one or more tensile member to bring a wall of the heart and a septum of the heart into contact. A plurality of tension members may help exclude scar tissue and provide a more effective remaining ventricle chamber. The implant may be deployed during beating of the heart, often in a minimally invasive or less-invasive manner. Trauma to the tissues of the heart may be inhibited by selectively approximating tissues while a pressure within the heart is temporarily reduced. Three-dimensional implant locating devices and systems facilitate beneficial heart chamber volumetric shape remodeling.
    Type: Application
    Filed: March 5, 2020
    Publication date: July 9, 2020
    Applicant: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, David K. Swanson
  • Publication number: 20200205981
    Abstract: According to one embodiment, a protective device for use in congestive heart failure treatments, and other treatments, includes a control mechanism, an elongate shaft, and a protective plate. The control mechanism is coupled with a proximal end of the elongate shaft and the protective plate is pivotably coupled with a distal end of the elongate shaft. The elongate shaft enables the protective plate to be inserted within a body and navigated distally of a heart wall. The protective plate has a relatively wide and thin body portion and is pivotable relative to the elongate shaft by operation of the control mechanism. Pivoting and/or navigating of the protective plate within the body allows the protective plate to be positioned adjacent the heart wall to shield body organs or tissue surrounding the heart wall from being damaged by surgical instruments inserted through the heart wall.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Applicant: BioVentrix, Inc.
    Inventors: Kevin Van Bladel, Aaron Weiss, Lon Annest, Gilbert Mata, JR.