Patents Assigned to BLACKMORE SENSORS AND ANALYTICS, LLC
  • Patent number: 11585925
    Abstract: Doppler correction of phase-encoded LIDAR includes a code indicating a sequence of phases for a phase-encoded signal, and determining a first Fourier transform of the signal. A laser optical signal is used as a reference and modulated based on the code to produce a transmitted phase-encoded optical signal. A returned optical signal is received in response. The returned optical signal is mixed with the reference. The mixed optical signals are detected to produce an electrical signal. A cross spectrum is determined between in-phase and quadrature components of the electrical signal. A Doppler shift is based on a peak in the cross spectrum. A device is operated based on the Doppler shift. Sometimes a second Fourier transform of the electrical signal and the Doppler frequency shift produce a corrected Fourier transform and then a cross correlation. A range is determined based on a peak in the cross correlation.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: February 21, 2023
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Randy R. Reibel, James Curry, Michelle Milvich, Krishna Rupavatharam
  • Publication number: 20230049376
    Abstract: A method for classifying an object in a point cloud includes computing first and second classification statistics for one or more points in the point cloud. Closest matches are determined between the first and second classification statistics and a respective one of a set of first and second classification statistics corresponding to a set of N classes of a respective first and second classifier, to estimate the object is in a respective first and second class. If the first class does not correspond to the second class, a closest fit is performed between the point cloud and model point clouds for only the first and second classes of a third classifier. The object is assigned to the first or second class, based on the closest fit within near real time of receiving the 3D point cloud. A device is operated based on the assigned object class.
    Type: Application
    Filed: October 4, 2022
    Publication date: February 16, 2023
    Applicant: Blackmore Sensors & Analytics, LLC
    Inventors: Stephen C. Crouch, Brant Kaylor, Randy R. Reibel
  • Patent number: 11579292
    Abstract: An apparatus is provided for using a square wave digital chirp signal for optical chirp range detection. A laser source emits an optical signal and a RF waveform generator generates an input digital chirp signal based on the square wave digital chirp signal. A frequency of the optical signal is modulated based on the input digital chirp signal. A splitter divides the optical signal into a transmit optical signal and a reference optical signal. A detector combines the reference optical signal and a return optical signal from an object. The detector generates an electrical output signal based on the combined reference optical signal and the return optical signal. A processor determines a range to the object based on a characteristic of a Fourier transform the electrical output signal. A method is also provided for using the square wave digital chirp signal for optical chirp range detection.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: February 14, 2023
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, James Curry, Trenton Berg, Richard Funk, Kyle Oliver, Daniel Ferguson
  • Publication number: 20230025474
    Abstract: Techniques for controlling an autonomous vehicle with a processor that controls operation, includes operating a Doppler LIDAR system to collect point cloud data that indicates for each point at least four dimensions including an inclination angle, an azimuthal angle, a range, and relative speed between the point and the LIDAR system. A value of a property of an object in the point cloud is determined based on only three or fewer of the at least four dimensions. In some of embodiments, determining the value of the property of the object includes isolating multiple points in the point cloud data which have high value Doppler components. A moving object within the plurality of points is determined based on a cluster by azimuth and Doppler component values.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 26, 2023
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Devlin Baker, Stephen C. Crouch
  • Patent number: 11561304
    Abstract: Techniques for optimizing a scan pattern of a LIDAR system including a bistatic transceiver include receiving first SNR values based on values of a range of the target, where the first SNR values are for a respective scan rate. Techniques further include receiving second SNR values based on values of the range of the target, where the second SNR values are for a respective integration time. Techniques further include receiving a maximum design range of the target at each angle in the angle range. Techniques further include determining, for each angle in the angle range, a maximum scan rate and a minimum integration time. Techniques further include defining a scan pattern of the LIDAR system based on the maximum scan rate and the minimum integration time at each angle and operating the LIDAR system according to the scan pattern.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: January 24, 2023
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Edward Angus, Michelle Milvich
  • Patent number: 11537808
    Abstract: A method for classifying an object in a point cloud includes computing first and second classification statistics for one or more points in the point cloud. Closest matches are determined between the first and second classification statistics and a respective one of a set of first and second classification statistics corresponding to a set of N classes of a respective first and second classifier, to estimate the object is in a respective first and second class. If the first class does not correspond to the second class, a closest fit is performed between the point cloud and model point clouds for only the first and second classes of a third classifier. The object is assigned to the first or second class, based on the closest fit within near real time of receiving the 3D point cloud. A device is operated based on the assigned object class.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 27, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Randy R. Reibel, Brant Kaylor
  • Patent number: 11500106
    Abstract: Techniques for controlling an autonomous vehicle with a processor that controls operation, includes operating a Doppler LIDAR system to collect point cloud data that indicates for each point at least four dimensions including an inclination angle, an azimuthal angle, a range, and relative speed between the point and the LIDAR system. A value of a property of an object in the point cloud is determined based on only three or fewer of the at least four dimensions. In some of embodiments, determining the value of the property of the object includes isolating multiple points in the point cloud data which have high value Doppler components. A moving object within the plurality of points is determined based on a cluster by azimuth and Doppler component values.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: November 15, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Devlin Baker
  • Publication number: 20220326383
    Abstract: Techniques for automatic adaptive scanning with a laser scanner include obtaining range measurements at a coarse angular resolution and forming a horizontally sorted range gate subset and a characteristic range. A fine angular resolution is determined automatically based on the characteristic range and a target spatial resolution. If the fine angular resolution is finer than the coarse angular resolution, then a minimum and maximum vertical angle is automatically determined in each horizontal slice extending a bin size from any previous horizontal slice. A set of adaptive minimum and maximum vertical angles is determined automatically by dilating and interpolating the minimum and maximum vertical angles of all the slices to the second horizontal angular resolution. A horizontal start angle, and the set of adaptive minimum and maximum vertical angles are sent to cause the ranging system to obtain measurements at the second angular resolution.
    Type: Application
    Filed: January 27, 2022
    Publication date: October 13, 2022
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Randy R. Reibel, James Curry, Trenton Berg
  • Publication number: 20220266853
    Abstract: A LIDAR system includes a laser source, a first lens, and a second lens. The laser source is configured to output a first beam. The first lens includes a planar portion and a convex portion. The first lens is configured to receive the first beam and output a second beam responsive to the first beam. The second lens includes a concave portion and a planar portion. The second lens is configured to receive the second beam and output a third beam responsive to the second beam.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 25, 2022
    Applicant: Blackmore Sensors & Analytics, LLC
    Inventors: Edward Joseph Angus, Zeb Barber, Ryan Moore Galloway
  • Patent number: 11409043
    Abstract: A light detection and ranging (LIDAR) system includes a laser, a transceiver, and one or more optics. The laser source is configured to generate a beam. The transceiver is configured to transmit the beam as a transmit signal through a transmission waveguide and to receive a return signal reflected by an object through a receiving waveguide. The one or more optics are external to the transceiver and configured to optically change a distance between the transmit signal and the return signal by displacing one of the transmit signal or the return signal.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: August 9, 2022
    Assignee: BLACKMORE SENSORS AND ANALYTICS, LLC
    Inventors: Evan Rogers, Ryan Galloway, Zeb Barber, Sean Spillane
  • Publication number: 20220244363
    Abstract: A method for controlling a light detection and ranging (LIDAR) sensor system includes determining a code that has a first set of symbols having a first number of symbols. An optical signal generated based on the code is transmitted to an environment. The first set of symbols are transmitted as part of the optical signal in a first duration. In response to transmitting the optical signal, a returned optical signal that is reflected from an object in the environment is received. A second number of symbols to be sampled is determined, the second number of symbols being different than the first number of symbols. A second set of symbols having the second number of symbols is sampled in a second duration based on the returned optical signal. A range to the object is determined based on the second set of symbols.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Patent number: 11366228
    Abstract: In some implementations, a light detection and ranging (LIDAR) system includes a transmitter configured to transmit an optical signal that is output from a laser and modulated based on a modulating signal, a receiver configured to receive a returned optical signal in response to transmitting the optical signal, and a processor. The processor is configured to produce a first optical signal based on the returned optical signal and a first version of the modulating signal, produce a second optical signal based on the returned optical signal and a second version of the modulating signal, generate a digital signal based on the first optical signal and the second optical signal, determine a Doppler frequency shift of the returned optical signal based, at least in part, on the digital signal, and provide data indicative of the Doppler frequency shift to a vehicle.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: June 21, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Krishna Rupavatharam
  • Patent number: 11327161
    Abstract: A light detection and ranging (LIDAR) system includes one or more processors, and one or more computer-readable storage mediums storing instructions which, when executed by the one or more processors, cause the one or more processors to determine a code that has a first number of symbols, transmit, to an environment, an optical signal generated based on the code such that the first number of symbols are transmitted in a first duration, in response to transmitting the optical signal, receive a returned optical signal that is reflected from an object in the environment, sample, from the returned optical signal, a second number of symbols in a second duration, the second number being different from the first number, and determine, based on the second number of symbols, a range to the object.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 10, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Zeb William Barber, Stephen C. Crouch, Emil A. Kadlec
  • Publication number: 20220128703
    Abstract: An autonomous vehicle includes a LIDAR system that includes a waveguide array, a collimator configured to receive a plurality of beams from the waveguide array and output a plurality of collimated beams, and a scanner configured to adjust a direction of the plurality of collimated beams. The vehicle also includes one or more processors configured to determine a range to an object based on a return signal received from reflection or scattering of the plurality of collimated beams by the object and to control operation of at least one of a steering system or the braking system based on the range.
    Type: Application
    Filed: January 4, 2022
    Publication date: April 28, 2022
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Edward Angus, Michelle Milvich
  • Publication number: 20220113387
    Abstract: A system and method for scanning of coherent LIDAR. The system includes a motor, a laser source configured to generate an optical beam, and a deflector. A first facet of the plurality of facets has a facet normal direction. The deflector is coupled to the motor and is configured to rotate about a rotation axis to deflect the optical beam from the laser source. The laser source is configured to direct the optical beam such that the optical beam is incident on the deflector at a first incident angle in a first plane, wherein the first plane includes the rotation axis, wherein the first incident angle is spaced apart from the facet normal direction for the first facet. A second facet of the plurality of facets includes an optical element configured to deflect the optical beam at the first incident angle into a deflected angle.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Ryan Moore Galloway, Edward Angus, Zeb William Barber
  • Patent number: 11260881
    Abstract: A LIDAR system includes a laser source, a first lens, and a second lens. The laser source is configured to output a first beam. The first lens includes a planar portion and a convex portion. The first lens is configured to receive the first beam and output a second beam responsive to the first beam. The second lens includes a concave portion and a planar portion. The second lens is configured to receive the second beam and output a third beam responsive to the second beam.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: March 1, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Edward Joseph Angus, Zeb Barber, Ryan Moore Galloway
  • Patent number: 11249194
    Abstract: An autonomous vehicle includes a LIDAR system that includes a waveguide array, a collimator configured to receive a plurality of beams from the waveguide array and output a plurality of collimated beams, and a scanner configured to adjust a direction of the plurality of collimated beams. The vehicle also includes one or more processors configured to determine a range to an object based on a return signal received from reflection or scattering of the plurality of collimated beams by the object and to control operation of at least one of a steering system or the braking system based on the range.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: February 15, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Edward Angus, Michelle Milvich
  • Patent number: 11249192
    Abstract: Techniques for automatic adaptive scanning with a laser scanner include obtaining range measurements at a coarse angular resolution and forming a horizontally sorted range gate subset and a characteristic range. A fine angular resolution is determined automatically based on the characteristic range and a target spatial resolution. If the fine angular resolution is finer than the coarse angular resolution, then a minimum and maximum vertical angle is automatically determined in each horizontal slice extending a bin size from any previous horizontal slice. A set of adaptive minimum and maximum vertical angles is determined automatically by dilating and interpolating the minimum and maximum vertical angles of all the slices to the second horizontal angular resolution. A horizontal start angle, and the set of adaptive minimum and maximum vertical angles are sent to cause the ranging system to obtain measurements at the second angular resolution.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 15, 2022
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Stephen C. Crouch, Randy R. Reibel, James Curry, Trenton Berg
  • Publication number: 20220043151
    Abstract: A system and method for vehicle odometry using coherent range Doppler optical sensors. The system and method includes operating a Doppler light detection and ranging (LIDAR) system to collect raw point cloud data that indicates for a point a plurality of dimensions, wherein a dimension of the plurality of dimensions includes an inclination angle, an azimuthal angle, a range, or a relative speed between the point and the LIDAR system; determining a corrected velocity vector for the Doppler LIDAR system based on the raw point cloud data; and producing revised point cloud data that is corrected for the velocity of the Doppler LIDAR system.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 10, 2022
    Applicant: BLACKMORE SENSORS & ANALYTICS, LLC.
    Inventors: Devlin BAKER, James CURRY
  • Patent number: 11237253
    Abstract: A system and method for scanning of coherent LIDAR. The system includes a motor, a laser source configured to generate an optical beam, and a deflector. A first facet of the plurality of facets has a facet normal direction. The deflector is coupled to the motor and is configured to rotate about a rotation axis to deflect the optical beam from the laser source. The laser source is configured to direct the optical beam such that the optical beam is incident on the deflector at a first incident angle in a first plane, wherein the first plane includes the rotation axis, wherein the first incident angle is spaced apart from the facet normal direction for the first facet. A second facet of the plurality of facets includes an optical element configured to deflect the optical beam at the first incident angle into a deflected angle.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: February 1, 2022
    Assignee: BLACKMORE SENSORS AND ANALYTICS, LLC
    Inventors: Ryan Moore Galloway, Edward Angus, Zeb William Barber