Patents Assigned to Blade Dynamics Limited
  • Patent number: 11971010
    Abstract: The present invention relates to a wind turbine blade (10) comprising an aerodynamic shell (83) having an outer surface (84) forming at least part of an exterior surface of the wind turbine blade and an inner surface (85). An access window (80) extends through the shell (83). A panel (87) is arranged within a recessed portion (86) at the inner surface of the shell adjacent to the access window (80) for closing the access window (80).
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 30, 2024
    Assignee: Blade Dynamics Limited
    Inventors: Jelmer Cnossen, Paul Damian Michael Todd
  • Patent number: 11939948
    Abstract: Disclosed is a blade shell section of a wind turbine blade, such as wind turbine blade with a flatback section. The blade shell section extends in a longitudinal direction from a first shell section position to a second shell section position. The blade shell section comprises a first laminate layer forming the outer surface of the blade shell section and a second laminate layer forming the inner surface of the blade shell section. The blade shell section further comprising a first shell section and a corner shell section between the contour shell section and the flatback shell section.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: March 26, 2024
    Assignees: LM WIND POWER A/S, LM WIND POWER R&D (HOLLAND) B.V., BLADE DYNAMICS LIMITED
    Inventors: Manish Mukherjee, Laszlo Bartha, Aydin Raeis Hosseiny, Sigmund Wenningsted
  • Patent number: 11879426
    Abstract: A rotor blade assembly includes a rotor blade defining a pressure side and a suction side extending between a leading edge and a trailing edge. Further, the rotor blade assembly includes at least one structural feature secured within the rotor blade and spaced apart from the trailing edge to define a void between the pressure side, the suction side, and the trailing edge. Moreover, the rotor blade assembly includes an adhesive filling the void between the pressure side, the suction side, and the trailing edge to provide an adhesive connection between the pressure side, the suction side, the trailing edge, and the structural feature(s). In addition, the adhesive contacts the structural feature(s) at an interface and defines a fillet profile.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: January 23, 2024
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Andrew Stuart Edge, Paul Trevor Hayden, Harald Behmer, Mark Hancock, Harry Fish
  • Patent number: 11745446
    Abstract: A method for manufacturing a wind turbine blade includes the use of an apparatus having an engagement part. The engagement part has: a support element having a first support edge and a second support edge, a belt extending around the support element and forming a primary engagement edge of the engagement part along the first support edge of the support element. The method includes: providing one or more pre-shaped elements, including a first pre-shaped element, in a first element position, positioning the engagement part in a first position, moving the support element in a first direction with a first velocity to extend underneath the first pre-shaped element, and at the same time moving the belt relative to the support element around the first support edge in a primary direction from below the first support edge to above the first support edge with a primary velocity.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: September 5, 2023
    Assignee: BLADE DYNAMICS LIMITED
    Inventor: Harry Fish
  • Publication number: 20230109860
    Abstract: The present invention relates to an access arrangement (90) of a wind turbine blade for accessing a hollow space within the blade. The access arrangement (90) comprises an access opening (180) provided in the blade shell member, a cover panel (92) for covering the access opening (180), a sealing member (96) arranged between the cover panel (92) and the blade shell member, and one or more fasteners (98) for releasably fastening the cover panel (92) to the blade shell member. The present invention also relates to a wind turbine blade comprising the access arrangement (90).
    Type: Application
    Filed: December 14, 2022
    Publication date: April 13, 2023
    Applicant: BLADE DYNAMICS LIMITED
    Inventors: Andrea AVALDI, Chris Paul SWATTON, Harry George James FISH, Jelmer CNOSSEN, Manish MUKHERJEE
  • Publication number: 20230059436
    Abstract: The present invention relates to a wind turbine blade (10) comprising a shell body with at least one pressure side shell member (36) and at least one suction side shell member (38), and a plurality of shear webs (70) arranged within the shell body. The plurality of shear webs (70) is successively arranged spanwise within the shell body such that adjacent shear webs overlap along part of their spanwise extent (L), wherein a gap (88) in the chordwise direction is provided between adjacent shear webs (70).
    Type: Application
    Filed: November 2, 2022
    Publication date: February 23, 2023
    Applicant: BLADE DYNAMICS LIMITED
    Inventor: Andrea AVALDI
  • Patent number: 11555483
    Abstract: The present invention relates to an access arrangement (90) of a wind turbine blade for accessing a hollow space within the blade. The access arrangement (90) comprises an access opening (180) provided in the blade shell member, a cover panel (92) for covering the access opening (180), a sealing member (96) arranged between the cover panel (92) and the blade shell member, and one or more fasteners (98) for releasably fastening the cover panel (92) to the blade shell member. The present invention also relates to a wind turbine blade comprising the access arrangement (90).
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: January 17, 2023
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Andrea Avaldi, Chris Paul Swatton, Harry George James Fish, Jelmer Cnossen, Manish Mukherjee
  • Patent number: 11519383
    Abstract: The present invention relates to a wind turbine blade (10) comprising a shell body with at least one pressure side shell member (36) and at least one suction side shell member (38), and a plurality of shear webs (70) arranged within the shell body. The plurality of shear webs (70) is successively arranged spanwise within the shell body such that adjacent shear webs overlap along part of their spanwise extent (L), wherein a gap (88) in the chordwise direction is provided between adjacent shear webs (70).
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: December 6, 2022
    Assignee: BLADE DYNAMICS LIMITED
    Inventor: Andrea Avaldi
  • Patent number: 11486351
    Abstract: Disclosed is a method for sealing a joint between a first blade section and a second blade section of a wind turbine blade, a sealing member and a wind turbine blade comprising a sealing member. The sealing member having a first surface and a second surface. The sealing member having a width between a first edge and a second edge. The sealing member being configured for attachment to the first outer shell along the first edge, and for attachment to the second outer shell along the second edge. The sealing member comprising a corrugated section between the first edge and the second edge, the corrugated section comprising one or more valleys and/or ridges extending along a lengthwise direction of the sealing member.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 1, 2022
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Andrea Avaldi, Chris Paul Swatton, Harry George James Fish, Manish Mukherjee
  • Patent number: 10677215
    Abstract: A wind turbine blade and a method of moulding a wind turbine blade tip section. The overall wind turbine blade has an elongate structure extending in a radial sense in a finished wind turbine. The blade comprises a fairing that one is supported along its length by a spar extended along the full length of the fairing from the root end to the tip. The fairing is in two parts with a main part extending from the root for most the of the longitudinal length of the blade and the tip section forming the remainder of the blade.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 9, 2020
    Assignee: Blade Dynamics Limited
    Inventors: Paul Trevor Hayden, Harald Behmer
  • Patent number: 10486377
    Abstract: The present invention relates to a method of moulding a composite article using a mould. The mould includes first and second rigid mould parts between them defining a mould cavity. A reservoir of resin is connected to an inlet into the mould cavity. A suction pump is connected to a port on the opposite side of the mould cavity from the inlet. At least one of the mould parts has an arrangement of grooves on the surface facing the mould cavity to distribute resin across the mould cavity. The method includes laying up fibres in the mould cavity, injecting resin from the reservoir by running the suction pump to fill the mould cavity with resin, curing the resin article to form a moulded article and opening the mould and removing the article.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: November 26, 2019
    Assignee: Blade Dynamics Limited
    Inventors: Peter Anthony Broome, Paul Trevor Hayden
  • Patent number: 10451030
    Abstract: A wind turbine blade comprising first and second adjacent blade sections arranged end to end along the length of the blade. Each section comprises an aerodynamic fairing and a spar. Each spar comprises a shear web extending across the fairing and a pair of spar caps, one at either end of the shear web. Each spar cap in the first section has a different cross-sectional shape and/or material from the respective spar cap in the second section and wherein the spar cap in the first section is joined to the respective spar cap in the second section via a connection piece. Each connection piece is a pre-cured component extending along the length of the blade from a first inclined end configured to connect to a first complimentary inclined end of a spar cap of the first blade section and a second inclined end.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 22, 2019
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Paul Trevor Hayden, Andrea Giuseppe Avaldi
  • Patent number: 10273937
    Abstract: A composite member comprises first and second elongate composite elements. Each has a wedge shaped end with a complimentary tapered end surface. At least one of the components is formed of a stack of fiber layers impregnated in resin, with the tapered end surface being formed by each fiber layer extending longitudinally progressively further than the adjacent layer towards the thin end of the wedge at which the fiber layers have the greatest longitudinal extent. The components are joined at their tapered ends by an adhesive, and the properties of the cured composite material of the at least one component and/or the properties of the adhesive are different in the vicinity of the thin end of the wedge as compared to the rest of the tapered surface in order to reduce the stress concentrations in this region.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: April 30, 2019
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Paul Trevor Hayden, Harald Behmer
  • Patent number: 10240578
    Abstract: An erosion resistant aerodynamic fairing for a rotor blade. A fairing body is formed from at least one reinforcing fiber layer set in a cured resin. An erosion resistant pre-form is fixed to an outer surface of the fairing body. The erosion resistant pre-form comprises a thermoplastic film outer layer fused to a fiber substrate. The fiber substrate of the erosion resistant pre-form is impregnated with the cured resin of the fairing body which fixes at the preform to the fairing body.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: March 26, 2019
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Harald Behmer, Peter Anthony Broome, Paul Trevor Hayden
  • Patent number: 10184448
    Abstract: A wind turbine blade which is at least 45 m long. The blade has a main axis in the lengthwise direction from root to tip and an aerodynamic shell surrounding a spar which extends in a lengthwise direction along a substantial proportion of the blade at least a portion of the half of the shell closest to the tip. The blade is reinforced by high stiffness fibers having a Young's modulus to density ratio of greater than 50 GPa/(g·cm?3), and an electrical resistivity of greater than 1010 ?·cm. The fibers are biaxial with a first axis angled with respect to the main axis at an acute angle and a second axis angled with respect to the main axis at an acute angle in the opposite sense to the first angle.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: January 22, 2019
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Paul Trevor Hayden, David Anthony Whiley
  • Patent number: 10125741
    Abstract: A wind turbine rotor comprising a hub (1) from which a plurality of blades (2) project to a radius of at least 50 meters. Each blade comprising a hollow fairing supported by a central spar. Each blade has a thickness t at a radius r; characterized in that when r=0.5 R, t>0.3 T, where R is the radius of the blade and T is the thickness of the blade at the root end. By being thicker for a greater proportion of the blade, the aerodynamic performance of this part of the blade is worse, but this is more than compensated for as it allows better aerodynamic performance where it matters more, namely at the outer part of the blade. It also allows larger blades to be provided.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: November 13, 2018
    Assignee: Blade Dynamics Limited
    Inventors: Paul Trevor Hayden, David Anthony Whiley
  • Patent number: 9970412
    Abstract: A wind turbine blade comprising a fairing with a rigid structural component (12) which forms the majority of the aerodynamic profile and a non-actively controllable elastically deformable trailing edge component (14) mounted on the structural component to complete the aerodynamic profile. The trailing edge component (14) is formed from a material having an elastic modulus in the range of 0.5 to 2.5 GPa such it will elastically buckle when loading on the trailing edge component exceeds a predetermined threshold. The structural component (12) comprises a unidirectional reinforcing layer adjacent to the trailing edge component with at least one layer of unidirectional fibers (26) extending in a substantially spanwise direction.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: May 15, 2018
    Assignee: BLADE DYNAMICS LIMITED
    Inventors: Paul Hayden, Joaquin Gutierrez
  • Patent number: 9897066
    Abstract: A method of making a root end joint for a wind turbine. A plurality of root segments (10) are formed of a composite material. Each has an arcuate end face (11) which subtends an angle of 90° or less and has a plurality of connection holes (12). The segments are joined together side-by-side to build up the circular profile of the root end. The segments include a proportion of uni-axial to multiaxial fiber which decreases from the arcuate end face towards the opposite end.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: February 20, 2018
    Assignee: Blade Dynamics Limited
    Inventors: Paul Trevor Hayden, Peter Anthony Broome
  • Patent number: 9863258
    Abstract: A method of forming a structural connection between a spar cap 14 and an aerodynamic fairing 12. A composite comprising an uncured matrix and a compressible solid is applied between the spar cap and fairing and is then compressed and cured to adhere the fairing to the spar cap. The cured matrix composite has a void volume of at least 20%. The high void volume means that as the fairing is compressed into place and compresses the composite, it has space in which to deform so as not to place undue stress on the fairing and to produce a lightweight connection.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: January 9, 2018
    Assignee: Blade Dynamics Limited
    Inventors: Paul Hayden, Harald Behmer
  • Patent number: 9651029
    Abstract: A self-supporting wind turbine tower with walls comprising an upper portion (12) and a lower portion (14). Substantially all of the upper portion (12) is formed from a composite plastic. Substantially all of the lower portion (14) is formed from mild steel.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: May 16, 2017
    Assignee: Blade Dynamics Limited
    Inventors: Paul Hayden, Joaquin Gutierrez