Abstract: Disclosed herein is a housing for containing a laser and lens for use in a laser light projection display, and a lighting device incorporating the laser within the housing and other light sources, such as light-emitting diodes (LEDs). The laser and lens are secured within a housing and maintain a spaced distance using a spacer. The lighting device uses the laser in combination with LEDs arrayed around the laser to provide a dual source light.
Abstract: The present disclosure is directed to projection devices that can project patterned light of different colors. In one implementation, the projection device can include a housing, within which reside multiple components. These components can include light emitting diodes (LEDs), a parabolic mirror reflector, a sinusoidal lenticular diffuser, and multiple spatial filters. The multiple LEDs can be provided in at least two distinct colors. The parabolic mirror reflector can be arranged to collimate light received from the multiple LEDs. The sinusoidal lenticular diffuser can be positioned at an output of the parabolic mirror reflector and arranged to diffuse the collimated light. The spatial filters can be arranged to diffuse the diffused and collimated light received from the sinusoidal lenticular diffuser. An imaging lens can be coupled to the housing and arranged to magnify the diffused light received from the spatial filters and display a cloud-like effect on a first surface.
Abstract: Embodiments of invention are directed to a lighting device for use in accent lighting applications. In one embodiment, the lighting device includes a coherent light source, such as a laser, and a diffractive optical element. The diffractive optical element may be, for example, a holographic optical element. The lighting device may be adapted to retrofit into a pre-existing light fixture. In one application, the lighting device may project a static or movable star field and/or static or movable clouds.